期刊文献+

基于三线态-三线态湮灭的能量上转换 被引量:1

Development of Energy Upconversion Based on Triplet-Triplet Annihilation
原文传递
导出
摘要 能量上转换近些年来引起了人们的广泛关注,具有许多方面的潜在应用,包括光伏技术、光合成、光催化和生物成像等。基于三线态-三线态湮灭(TTA)的能量上转换由于其具有激发光不需要是相干光,强度低,而且只要通过改变TTA过程中不同的敏化剂和受体,就能改变TTA上转换的激发光和发射光的波长等优点,有着广泛的应用前景。本文介绍了TTA上转换的机理,综述了TTA上转换近些年来的研究进展,总结了一些常用的敏化剂和受体,讨论了TTA上转换目前存在的问题及今后的发展方向。 Energy upconversion based on triplet-triplet annihilation (TTA) has attracted much attention due to its potential applications in different fields, such as photovohaics, photosynthesis, photocatalysis, bioimaging, etc. It exhibits many merits, such as excitation with non-coherent light sources, low excitation power density, and tunable excitation and emission wavelength simply by independent selection of the sensitizer and the acceptor during the upconversion process. Hence, TTA-based energy upeonversion is now an emerging technique which has a promising future. Herein, the principle of TTA-based upconversion and the requirements of the sensitizer and its corresponding acceptor have been discussed. Besides, the examples of the sensitizer molecules, including iridium complexes, palladium complexes, platinum complexes, ruthenium complexes as well as organic molecules, and their corresponding acceptor molecules are summarized. Meanwhile, the existing problems and the direction of future development of TTA-based upeonversion have also been outlined in this review.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2012年第10期1880-1889,共10页 Progress in Chemistry
基金 国家重点基础研究发展计划(973)项目(No.2009CB930601) 国家自然科学基金项目(No.21171098 21174064) 江苏省高校自然科学基础研究面上项目(No.10KJB430010) 南京邮电大学引进人才科研启动基金项目(No.NY210029)资助
关键词 能量上转换 三线态-三线态湮灭 敏化剂 受体 energy upconversion triplet-triplet annihilation (TTA) sensitizer aeceptor
  • 相关文献

参考文献50

  • 1Singh-Rachford T N, Castellano F N. Coord. Chem. Rev., 2010, 254: 2560-2573.
  • 2Khnayzer R S, Blumhoff J, Harrington J A, Haefele A, Deng F, Castellano F N. Chem. Commun., 2012, 48: 209-211.
  • 3Ceroni P. Chem. Eur. J., 2011, 17: 9560-9564.
  • 4Wang F, Liu X. Chem. Soc. Rev., 2009, 38: 976-989.
  • 5Zhao J, Ji S, Guo H. RSC Adv., 2011, 1: 937-950.
  • 6Parker C A, Hatchard C G. Proc. Chem. Soc. London, 1962, 386.
  • 7Cheng Y Y, Fuckel B, MacQueen R W, Khoury T, Clady R G C R, Schulze T F, Ekins-Daukes N J, Crossley M J, Stannowski B, Lips K, Schmidt T W. Energy Environ. Sci., 2012, 5: 6953-6959.
  • 8Wohnhaas C, Turshatov A, Mailander V, Lorenz S, Baluschev S, Miteva T, Landfester K. Macromol. Biosci., 2011, 11: 772-778.
  • 9Liu Q, Yang T, Feng W, Li F. J. Am. Chem. Soc., 2012, 134: 5390-5397.
  • 10Cheng Y Y, Khoury T, Clady R G C R, Tayebjee M J Y, Ekins-Daukes N. J, Crossleya M J, Schmidt T W. Phys. Chem. Chem. Phys., 2010, 12: 66-71.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部