期刊文献+

基于压缩感知的二维DOA估计 被引量:5

Two dimensional DOA estimation based on compressed sensing
下载PDF
导出
摘要 针对L阵列,提出基于压缩感知的二维波达方向估计新方法。定义方位角和俯仰角余弦乘积为空间合成角,利用等余弦网格划分空间合成角构造超完备的冗余字典,将子阵接收的单快拍数据矢量转化为冗余字典下的稀疏表示问题;采用单位列向量组合矩阵随机抽取的新方法构造高斯随机测量矩阵;通过改进正交匹配追踪算法求解二维波达角。指出所提出的算法比传统二维MUSIC算法在高信噪比、多快拍条件下估计性能更好,并且有一定的阵元节约效能。计算机仿真实验证明了以上结论。 A new two-dimensional (2-D) Direction Of Arrival (DOA) estimation algorithm based on Compressed Sensing (CS) is proposed with L-shaped array. After a space combined angle consists of azimuth and elevation an- gles is defined, a redundant dictionary is constructed through equally cosine partitioning the space combined angle. And then the output data vector of subarrays can be sparsely represented by the dictionary. In this work, Gauss mea- suring matrix is constructed by randomly sampling unit column vectors~ and the bearings of spatial targets are esti- mated by improved Orthogonal Matching Pursuit (OMP) algorithm. By contrast with conventional 2-D MUSIC al- gorithm, simulations are evaluated and the results show that the new algorithm can achieve much better performance under the condition of lower Signal-to-Noise Ratio (SNR), single snapshot of data, near and coherent sources.
出处 《计算机工程与应用》 CSCD 2012年第28期159-163,共5页 Computer Engineering and Applications
关键词 阵列信号处理 二维波达方向估计 压缩感知 冗余字典 稀疏表示 高斯随机测量矩阵 array signal processing two Dimensional Direction of Arrival (DOA) estimation Compressed Sensing(CS) redundant dictionary spare representation Gauss random measuring matrix
  • 相关文献

参考文献15

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 2Candes E, Romberg J, Tao J.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006,52 (2) : 489-509.
  • 3Mishali M, Eldar Y C.From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics on Signal Processing, 2010,4(2) :375-391.
  • 4Davenport M A,Boufounos P T,Wakin M B,et al:Signal processing with compressive measurements[J].IEEE Journal of Selected Topics on Signal Processing,2010,4 (2) :445-460.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 7Candes E.The restricted isometry property and its implications for compressed sensing[J].Academie des sciences, 2006,346 ( 1 ).
  • 8Donoho D L, Huo X.Uncertainty principles and ideal atomic decompositions[J].IEEE Transactions on Information Theory, 2001,47 : 2845-2862.
  • 9张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 10Candes E, Eldar Y C, Needell D.Compressed sensing with coherent and redundant dictionaries[J].Applied and Computational Harmonic Analysis, 2010, 31 ( 1 ) : 59-73.

二级参考文献236

共引文献1019

同被引文献38

  • 1陈昊.求解NP难问题的邻域搜索方法[J].湖北大学成人教育学院学报,2005,23(1):80-80. 被引量:4
  • 2MARPLE S L. Digital spectral analysis with applications[M]. Englewood Cliffs: Prentice-Hall,1987: 35- 101.
  • 3CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on information Theory,2006,52(2):489-509.
  • 4DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006,52(4):1289-1306.
  • 5DONOHO D L, TSAIG Y. Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 6CANDES E. Compressive sampling[C]. Proc of the Int Congress of Mathematicians.Madrid,2006,3:1433-1452.
  • 7MALIOUTOV D, CETIN M. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans. Signal Process, 2005.
  • 8YUAN RUI, YUE JUN. DOA study of four array elements in square based on compression sensing[J]. Applied Mechanics Materials, 635-637:971-977.
  • 9Marple S L. Digital spectral analysis with applications[M]. Englewood Cliffs:Prentice-Hall, 1987:35-101.
  • 10Candes E J. Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency informa-tion[J]. IEEE Trans on Information Theory,2006,52(2) :489-509.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部