期刊文献+

基于多帧融合及四参数仿射模型的图像超分辨

Image superresolution based on multiframe processing and 4-parameter affine model
下载PDF
导出
摘要 运动参数估计和复原是多帧图像超分辨重构中最重要的两个环节,其中经典的Fourier-Mellin变换方法于频域采用对数极坐标形式和相位相关方法结合来估计运动参数。相位相关是整像素级平移参数估计方法,将其改进为亚像素级平移参数估计方法,以提高旋转、缩放参数的估计精度。对于复原算法,在讨论基于局部信息的传统双三次插值超分辨重构方法的基础上,重点探讨基于全局信息的Kriging插值超分辨重构和核非线性回归(KNR)超分辨重构方法。实验结果表明,探讨的参数估计方法和超分辨重构方法是有效的。 Motion estimation and reconstruction are the two most important steps in image superresolution recon- struction based on multiframe processing. For this purpose, Fourier-Mellin transform algorithm is one of the most popular approaches which combines the log-polar image coordinate in the frequency spectrum with phase correla- tion to estimate the motion parameter. However, the estimation precision of phase correlation is limited to pixel lev- el, and in this manuscript it is improved to sub-pixel level to increase the estimation accuracy of rotation and scaling parameter. As for reconstruction algorithm, in comparison with the standard bicubic interpolation which is based on the local information contained in an image, the Kriging interpolation and Kernel Nonlinear Regression (KNR) superresolution algorithms are discussed which are based on the global information. The effectiveness of the motion estimation and the superresolution reconstruction algorithms discussed in the paper is illustrated by some experimen- tal results.
出处 《计算机工程与应用》 CSCD 2012年第28期206-213,共8页 Computer Engineering and Applications
基金 科技部国际合作项目(No.2009DFR10530) 国家自然科学基金(No.60862003) 教育部高等学校博士点基金(No.20095201110002) 贵州省工业科技攻关项目(黔科合GY字(2010)3054号)
关键词 图像超分辨 四参数仿射模型 FOURIER-MELLIN变换 KRIGING插值 核非线性回归(KNR) image superresolution 4-parameter affine model Fourier-Mellin transform Kriging interpolation Kernel Nonlinear Regression (KNR)
  • 相关文献

参考文献13

  • 1Park S C, Park M K, Kang M G.Super-resolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine,2003,20(3) :21-36.
  • 2De Castro E, Morandi C.Registration of translated and rotated images using finite fourier transforms[J].IEEE Trans on Pattern Anal Mach Intell, 1987, PAMI-9(5) : 700-703.
  • 3Chen Qin-Sheng, Defrise M, Deconinck F.Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16( 12): 1156-1168.
  • 4Raddy B S, Chetterji B N.An FFT-based technique for translation,rotation, and scale invariant image registration[J]. IEEE Trans on image Processing, 1996,5(8): 1266-1271.
  • 5Keys R.Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Signal Processing,Acoustics, Speech, and Signal Processing, 1981, ASSP-29 (6) : 1153-1160.
  • 6Umer M.Splines:a perfect fit for signal and image processing[J].IEEE Sigma Processing Magazine, 1999, 16 (6) : 22-38.
  • 7王靖波,潘懋,张绪定.基于Kriging方法的空间散乱点插值[J].计算机辅助设计与图形学学报,1999,11(6):525-529. 被引量:81
  • 8苏姝,林爱文,刘庆华.普通Kriging法在空间内插中的运用[J].江南大学学报(自然科学版),2004,3(1):18-21. 被引量:59
  • 9Liu Benyong,Liao Xiang. Image denoising and magnification via kernel fitting and modified SVD[C]//Proc IAS 09,Xi' an,2009,2 : 521-524.
  • 10Liu Benyong,Wu Wenyue, Chen Xiaowei.Kernel fitting for image segmentation[C]//Proc 7th Int Conf on Machine Learning and Cybernetics, Kunming, 2008, 7: 2914-2917.

二级参考文献6

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部