期刊文献+

滤波策略对噪声场影响的研究 被引量:1

Study on the Impact of Filtering Strategies for Noise Calculation
原文传递
导出
摘要 本文通过对二维轴对称射流场进行直接数值模拟,探讨了不同滤波策略对噪声场的影响。空间导数的离散采用六阶紧致差分格式,数值非稳定性的控制采用紧致10阶低滤波格式,时间推进采用四步四阶Runge-Kutta格式。对比分析了显式10阶与紧致10阶滤波格式,低存储3阶Runge-Kutta格式与四步四阶Runge-Kutta格式,交错阿格与同位网格方法等几种抑制寄生波方案。分析结果表明,在上述诸多抑制寄生波的方案中,采用交错网格法,计算过程最稳定、最有效。 In this paper, the impact of different filtering strategies for noise calculation is in- vestigated through direct numerical simulation of two-dimensional axisymmetric flow field. It is based on fourth order Runge-Kutta schemes for temporal discretization and sixth order compact finite-difference schemes for spatial discretization coupled with up to lOth-order low-pass filters which is adopted to control numerical stability. The suppression of the parasitic waves solutions were evaluated through comparison between explicit 10th-order and compact 10th-order filters,low-storage third-order Runge-Kutta scheme with four-step fourth-order Runge-Kutta scheme, the Parity grid method and the staggered grid method. The results show that in many above scenarios of inhibi- tion of parasitic waves, the calculation process of using staggered grid is most stable and most effective.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第10期1703-1706,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50976044)
关键词 计算气动声学 数值非稳定性 高阶滤波格式 computational aeroacoustics numerical instability high-order filter scheme
  • 相关文献

参考文献10

  • 1Goldstein M E. Aeroacoustics [M]. McGraw-Hill, New York, 1976, 68-72.
  • 2Sengupta T K Ganeriwal G, De S. Analysis of Cent, ral and Upwind Compact Schemes [J]. ,Journal of Computational Physics, 2003, 192:677-694.
  • 3Lele S K, Compact Finite Difference Schemes With Spectral-Like Resolution [J]. Journal of Computational Physics 1992, 103:16-42.
  • 4Tam C K W, Webb J C. Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics [J]. Journal of Computational Physics, 1993, 107: 262-281.
  • 5Visbal M R, Gaitonde D V. On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes [J]. Journal of Computational Physics, 2002, 181: 155- 185.
  • 6Nagarajan S, Lele S K, Ferziger J H. A Robust High-Order Compact Method for Large Eddy Simulation [J]. Journal of Computational Physics, 2003, 191:392-419.
  • 7Michalke A. Survey on Jet Instability Theory [J]. Prog Aerospace Sci, 1984, 21:159 -199.
  • 8Tam C K W. Computational Aeroacoustics: Issues and Methods [J]. AIAA Journal, 1995, 33(10): 1788-1796.
  • 9Preund J B. Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound [J]. AIAA Journal, 1997 ,35(2): 740-742.
  • 10Kennedy C A, Carpenter M H, Lewis R M. Low- Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations [R]. Technical Report ICASE No.99-22.

同被引文献9

  • 1张彬乾,张正科,姜正行.射流噪声场特性的试验研究[J].西北工业大学学报,1993,11(4):494-498. 被引量:10
  • 2Hileman J, Samimy M. Mach Number Effects on Jet Noise Sources and Radiation to Shallow Angles [J]. AIAA Jour- nal, 2006, 44(8): 1915 1918.
  • 3Tam C K W, Viswanathan K, Ahuja K K, et al. theSources of Jet Noise: Experimental Evidence [J]. Journal of Fluid Mechanic, 2008, 615:253-292.
  • 4Watanabe T, Okada R, Uzawa S, et al. Experimental Study of Supersonic Jet Noise Reduction With Microjet Injection [R]. Orlando, Florida: ASME Turbo Expo, 2009: 719-727.
  • 5Ishii T, Oinuma H, Nagai K, et al. Experimental Study on a Notched Nozzle for Jet Noise Reduction [R]. Vancouver, British Columbia: ASME Turbo Expo, 2011:265-276.
  • 6Barr6 S, Fleury V, Bogey C, et al. Experimental Study of the Properties of Near-Field and Far-Field Jet Noise [R]. Reston: AIAA, 2006:1 14.
  • 7姜正行,何克敏,张彬乾,等.湍流射流的实验研究[J].应用力学学报,1987,4(2):83-86.
  • 8朱锡佳,欧阳华,田杰,杜朝辉.渗透度对锯齿形尾缘喷嘴气动声学影响[J].噪声与振动控制,2011,31(5):113-116. 被引量:3
  • 9薛永飞,胡亚涛,涂运冲,黄雪芬,吴克启.有限元法圆射流的气动噪声和模态研究[J].工程热物理学报,2011,32(12):2052-2055. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部