期刊文献+

铁基氧载体与氢气的还原反应机理辨识 被引量:2

Reaction Mechanism Identification of Iron-Based Oxygen Carrier and Hydrogen
原文传递
导出
摘要 本文使用化学吸附仪研究Fe_2O_3/Al_2O_3氧载体与H_2的反应机理。在化学吸附仪中氧载体与H2在不同升温速率下发生程序升温还原反应(TPR),通过氢气消耗量计算氧载体转化率X,结合热力学平衡模拟辨识不同转化率区间的主导性反应;进而利用热分析动力学的积分法并结合双外推法研究各部分的反应机理。结果表明,转化率X为0~0.35时,反应可用二级化学反应速率方程来描述,机理函数为G(X)=(1-X)^(-1)-1,而在X为0 35~0 95时,反应可用成核-核生长模型来描述,机理函数表示为G(X)=[-ln(1-X)]^(3/4)。 In this paper, the mechanism of the reduction reaction between Fe203/A1203 oxygen carrier and hydrogen was studied using chenfisorption analyzer, where the temperature programmed reduction (TPR) of hydrogen and the oxygen carrier was carried out under various heating rates. The oxygen carrier conversion rate X was calculated from the consumption of hydrogen. By combining the TPR results of reduction process and the simulation results of thermodynamic equilibrium modelling, the reaction process was divided into two stages, and the main reaction in each stage was confirmed. The reaction mechanism of each stage was identified through the integration method and double extrapolated method of thermal analysis kinetics. The results revealed that the reaction can be expressed by the second order chemical reaction function G(X) = (1 X = 0 - 0.35, and by the nucleation and nuclei growth model G(X) = X)-1 - 1 in the range of ln(1 - X)]3/4 in the range of X = 0.35 - 0.95.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第10期1807-1810,共4页 Journal of Engineering Thermophysics
基金 国家自然科学创新群体项目(No.51021065) 教育部新世纪优秀人才支持计划(No.NCET-10-0395)
关键词 氧载体 热分析动力学 反应机理辨识 程序升温还原 化学链燃烧 oxygen carrier thermal analysis kinetics reaction mechanism identification tempera-ture programmed reduction chemical looping combustion
  • 相关文献

参考文献11

  • 1杨景标,蔡宁生,李振山.几种金属催化褐煤焦水蒸气气化的实验研究[J].中国电机工程学报,2007,27(26):7-12. 被引量:33
  • 2TIAN H, GUO Q, CHANG J. Investigation Into Decomposition Behavior of CaSO4 in Chemical-Looping Combustion [J]. Energy & Fuels, 2008, 22(6): 3915-3921.
  • 3Hossain M M, de Lasa H I. Reactivity and Stability of Co-Ni/Al2O3 Oxygen Carrier in Multicycle CLC [J]. AIChE Journal, 2007, 53(7): 1817-1829.
  • 4Sedor K E, Hossain M M, de Lasa H I. Reduction Kinetics of a Fluidizable Nickel-Alumina Oxygen Carrier for Chemical-Looping Combustion [J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 323-334.
  • 5Hossain M M, QLLddus M R, de Lasa H I. Reduction Kinetics of La Modified NiO/La-γAl2O3 Oxygen Carrier for Chemical-Looping Combustion [J]. Ind Eng Chem Res, 2010, 49(21): 11009-11017.
  • 6WEN D S, SONG P X, ZHANG K, et al. Thermal Oxidation of Iron Nanoparticles and its Implication for Chemical-Looping Combustion [J]. Journal of Chemical Technology & Biotechnology, 2011, 86(3): 375-380.
  • 7Abad A, Adanez J, Cuadrat A, et M. Kinetics of Redox Reactions of Ilmenite for Chemical-Looping Combustion [J]. Chemical Engineering Science, 2011, 66(4): 689-702.
  • 8Goldstein E A, Mitchell R E. Chemical Kinetics of Copper Oxide Reduction with Carbon Monoxide [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2803-2810.
  • 9蒋林林,赵海波,张少华,王保文,王建,郑楚光.溶胶凝胶Fe_2O_3/Al_2O_3氧载体与甲烷的循环反应性研究[J].工程热物理学报,2011,32(2):329-332. 被引量:5
  • 10CHEN H X, LIU N A. New Procedure for Derivation of Approximations for Temperature Integral [J]. AIChE Journal, 2006, 52(12): 4181-4185.

二级参考文献35

共引文献155

同被引文献19

  • 1吕瑶姣,张季爽,裴清清,侯让坤.活化粉煤灰的结构和组成研究[J].中国环境科学,1996,16(1):51-55. 被引量:20
  • 2ZHANG Y, CHEN H, CHEN C C, PLAZA J M, DUGAS R, ROCHELLE G T. Rate-based process modeling study of CO2 capture withaqueous monoethanolamine solution[J]. Ind Eng Chem Res, 2009, 48(20): 9233-9246.
  • 3BOLLAND O, UNDRUM H. A novel methodology for comparing CO2 capture options for natural gas-fired combined cycle plants[J]. AdvEnviron Res, 2003, 7(4): 901-911.
  • 4RICHTER H J, KNOCHE K F. Reversibility of combustion processes[J]. ACS Symposium Series, 1983, 235(1): 71-85.
  • 5AD魣NEZ J, GAY魣N P, CELAYA J, DE DIEGO L F, GARCA-LABIANO F, ABAD A. Chemical looping combustion in a 10 kWth prototypeusing a CuO/ Al2O3 oxygen carrier: Effect of operating conditions on methane combustion[J]. Ind Eng Chem Res, 2006, 45(17): 6075-6080.
  • 6MATTISSON T, JERNDAL E, LINDERHOLM C, LYNGFELT A. Reactivity of a spray-dried NiO / NiAl2 O4 oxygen carrier for chemical-looping combustion[J]. Chem Eng Sci, 2011, 66(20): 4636-4644.
  • 7ARJMAND M, AZAD A-M, LEION H, MATTISSON T, LYNGFELT A. Evaluation of CuAl2 O4 as an oxygen carrier in chemical-loopingcombustion[J]. Ind Eng Chem Res, 2012, 51(43): 13924-13934.
  • 8YU Z, LI C, FANG Y, HUANG J, WANG Z. Reduction rate enhancements for coal direct chemical looping combustion with an iron oxideoxygen carrier[J]. Energy Fuels, 2012, 26(4): 2505-2511.
  • 9SHULMAN A, CLEVERSTAM E, MATTISSON T, LYNGFELT A. Manganese / iron, manganese / nickel, and manganese / silicon oxidesused in chemical-looping with oxygen uncoupling (CLOU) for combustion of methane[J]. Energy Fuels, 2009, 23(10): 5269-5275.
  • 10SIRIWARDANE R, TIAN H, SIMONYI T, POSTON J. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical loopingcombustion[J]. Fuel, 2013, 108(0): 319-333.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部