期刊文献+

乳腺影像报告与数据系统在鉴别诊断乳腺良恶性肿瘤中的应用价值 被引量:5

Value of Breast Imaging Reporting and Data System in the Differential Diagnosis of Benign and Malignant Breast Carcinomas
下载PDF
导出
摘要 目的评价乳腺影像报告与数据系统(BI-RADS)在乳腺良恶性肿瘤鉴别诊断中的应用价值。资料与方法根据BI-RADS规范,分析202例患者共234个肿瘤的形态、方向、边缘、边界、内部回声、后方回声及钙化情况,并将病灶定义为3级(可能良性)、4级(可能恶性)和5级(高度可疑恶性)。计算每个病灶特征的阳性预测值与阴性预测值,分析影响诊断的因素。结果 49个(20.9%)为BI-RADS3级,47个(20.1%)为BI-RADS4级,138个(59.0%)为BI-RADS5级,BI-RADS3级对乳腺肿瘤的阴性预测值为98.0%(48/49),BI-RADS4级与5级对乳腺肿瘤的阳性预测值分别为34.0%(16/47)和92.8%(128/138)。BI-RADS对乳腺恶性肿瘤的诊断敏感性为99.3%,特异性为53.9%,阳性预测值为77.8%,阴性预测值为98.0%。对恶性肿瘤的诊断有较高阳性预测值的超声特征包括不完整的边缘(100.0%)、微钙化(100.0%)、不清晰的边界(97.3%)、后方回声衰减(97.0%);对良性肿瘤的诊断有较高阳性预测值的超声特征包括后方回声增强(100.0%)、形态规则(98.0%)、病灶方向平行于皮肤长轴(98.0%)、边缘完整(98.0%)、边界清晰(98.0%)与无钙化(98.0%)。结论 BI-RADS可帮助分析影响诊断的因素,有助于乳腺良恶性肿瘤的鉴别诊断。 Purpose To assess the applicability of the sonographic breast imaging reporting and data system (BI-RADS) classification for differentiating benign from malignant breast lesions. Materials and Methods A total of 202 patients with 234 breast lesions were included in this study. Each lesion was analyzed according to BI- RADS lexicon for ultrasonic features including shape, orientation, margin, boundary, internal echo pattern, posterior acoustic feature and calcification, and was categorized as category 3 (probably benign), category 4 (probably malignant), or category 5 (highly suggestive of malignancy). Positive predictive value and negative predictive value for each sonographic descriptor were calculated. The factors affecting diagnosis were also analyzed. Results BI-RADS assessment categories were category 3 in 49 lesions (20.9%), category 4 in 47 (20.1%), and category 5 in 138 (59.0%). The negative predictive value of category 3 for the diagnosis of breast lesions was 98.0%,5 (48/49), and the positive predictive values of category 4 and 5 for the diagnosis of breast lesions were 34.0% (16/47) and 92.8% (128/138), respectively. The sensitivity, specificity, positive predictive value and negative predictive value of BI-RADS category for the diagnosis of malignancy were 99.3%, 53.9%, 77.8%, and 98.0%, respectively. The features with highest positive predictive value for malignancy were noncircumscribed margin (100.0%), microcalcification (100.0%), indistinct boundary (97.3%), and posterior acoustic shadow (97.0%). BI-RADS descriptors showing high positive predictive value for benign lesions included posterior acoustic enhancement (100.0%), regular shape (98.0%), parallel orientation (98.0%), circumscribed margin (98.0%), abrupt interface (98.0%) and noncalcification (98.0%). Conclusion The BI-RADS classification is helpful in evaluating diagnosis and differentiating benign from malignant breast mass.
出处 《中国医学影像学杂志》 CSCD 北大核心 2012年第9期695-699,共5页 Chinese Journal of Medical Imaging
关键词 乳腺肿瘤 乳腺疾病 乳腺影像报告与数据系统 超声检查 乳房 诊断 鉴别 Breast neoplasms Breast diseases Breast imaging reporting and datasystem Ultrasonography, mammary Diagnosis, differential
  • 相关文献

参考文献8

  • 1American College of Radiology(ACR).Illustrated breast imaging reporting and data system(BI-RADS).4th ed.Reston,VA:American College of Radiology,2003.
  • 2Raza S,Goldkamp AL,Chikarmane SA,et al.US of breast masses categorized as BI-RADS3,4,and5:pictorial review of factors influencing clinical management.Radiographics,2010,30(5):1199-1213.
  • 3Balleyguier C,Ayadi S,Van Nguyen K,et al.BIRADS classification in mammography.Eur J Radiol,2007,61(2):192-194.
  • 4Levy L,Suissa M,Chiche J F,et al.BIRADS ultrasonography.Eur J Radiol,2007,61(2):202-211.
  • 5丛滋宏,王绍文.灰阶超声图像特征鉴别诊断乳腺良、恶性肿瘤的价值[J].中国医学影像学杂志,2010,18(2):164-166. 被引量:17
  • 6Costantini M,Belli P,Ierardi C,et al.Solid breast mass characterisation:use of the sonographic BI-RADS classification.Radiol Med,2007,112(6):877-894.
  • 7Huang CS,Wu CY,Chu JS,et al.Microcalcifications of non-palpable breast lesions detected by ultrasonography:correlation with mammography and histopathology.Ultrasound Obstet Gynecol,1999,13(6):431-436.
  • 8Yoon JH,Kim MJ,Moon HJ,et al.Subcategorization of ultrasonographic BI-RADS category4:positive predictive value and clinical factors affecting it.Ultrasound Med Biol,2011,37(5):693-699.

二级参考文献8

共引文献16

同被引文献46

  • 1王刚平,梁云爱,郭小艳,赵一诺,徐风亮,王洪远.肿瘤标志物在乳腺癌早期诊断和治疗中的应用[J].中国临床实用医学,2014,5(1). 被引量:7
  • 2顾雅佳,吴斌,张帅,杨天锡.使用乳腺影像报告和数据系统诊断乳腺疾病的体会[J].中华放射学杂志,2004,38(9):931-936. 被引量:27
  • 3乔江华,朱立元,韦伟.数字化钼靶检查在判断乳腺癌腋窝淋巴结转移中的价值探讨[J].临床外科杂志,2007,15(11):751-752. 被引量:7
  • 4R. Siegel,D. Naishadham,A. Jemal.Cancer Statistics [J].CA:A Cancer Journal for Clinicians,2012,62(1 ): 10-29.
  • 5Yoon JH,Kim MJ,Moon HJ,et al.Subcategorization of ultrasonographic BI-RADS category 4:positive predictive value and clinical factors affecting it[J].Ultrasound Med Biol,2011,37(5):693-699.
  • 6American College of Radiology. Breast imaging reporting and data system (BI-RADS) [ M ]. 4th edition. Reston : American Coll- ege of Radiology, 2003 : 112-113.
  • 7Folwer EE,Sellers TA,Lu B,et al. Breast imaging reporting and data system (BI-RADS) brerst composition desriptors:automated measurement development for full field digital mammography[J]. Mad Phys,2013,40:113502.
  • 8Sickles EA.Nonpalpable,circumscribed,noncalcified solid breast masses:likelihood of malignancy based on lesion size and age of patient[J]. Radiology, 1994,192:439-442.
  • 9Raza S,Goldkamp AL,Chikarmane SA,et al. US of breast ma- sses categorized as BI-1LADS 3,4 and 5:pictorial review of fac- tors influencing clinical managementl[J]. Radiographics,2010,30: 1199-1213.
  • 10Moon WK,Lo CM,Chang JM,et al. Quantitative ultrasound ana- lysis for classification of BI-RADS category 3 breast masses[J]. J Digit Imaging,2013,26:1091-1098.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部