期刊文献+

基于离散小波变换和Kalman滤波的直升机主减智能状态预测 被引量:2

Intelligent condition prognostic for a helicopter main gearbox using discrete wavelet and Kalman filtering
下载PDF
导出
摘要 主减速器(简称"主减")是直升机传动系统的关键部件,它常处于高转速高负荷的恶劣环境下,对其运行状态进行预测,于直升机的安全性来说至关重要。鉴于此,提出了一种离散小波变换(DWT)、Kalman滤波以及Elman神经网络相结合的直升机主减智能状态预测系统:DWT使用"db44"母小波对振动信号进行分解提取特征向量,Kalman滤波对未来各时刻的特征向量进行预测,Elman神经网络对预测值进行故障辨识和分类。在Kalman滤波算法中,提出了一种新的预测算法,并用实验对该算法组成的系统进行验证,结果表明:该Kalman滤波算法预测效果好,更适用于对主减的特征向量进行预测;离散小波变换(DWT)、Kalman滤波以及Elman神经网络相结合组成的智能状态预测系统是可行的,它能很好地对主减的未来状态进行预测。 Main gearbox (MGB) is a key component of a helicopter transmission system, it often runs under atrocious conditions of high rotating speed and high burden, it is very important to perform condition prognostic for safety of a helicopter. An intelligent condition prognostic system for helicopter MGB was presented here using discrete wavelet transformation (DWT), Kalman filtering and Elman neural network. The mother wavelet of Daubechies 44 (db44) was selected to extract feature vectors in the process of DWT. Kalman filtering was used for feature vector prognostic, and Elman neural network was taken for fault discrimination and classification. In the algorithm of Kalman filtering, a new prognostic method was proposed, and it was verified with tests. The results indicated that the prognostic outcome of Kalman filtering with this method is better, it is more applicable for prognostic of feature vectors, and the intelligent condition prognostic system composed of DWT, Kalman filtering and Elman neural network is feasible, it can predict the future condition of a helicopter MGB accurately.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第17期159-164,共6页 Journal of Vibration and Shock
基金 军内重点科研项目
关键词 主减速器 离散小波变换(DWT) Parseval定理 KALMAN滤波 ELMAN神经网络 main gearbox ( MGB ) discrete wavelet transformation (DWT) parseval theorem kalman filtering elman neural network
  • 相关文献

参考文献18

  • 1Land J E. HUMS-the benefits-past, present and future [ J]. IEEE, 2001, 6(s) :3083 -3094.
  • 2Samuel P D, Pines D J. A review of vibration-based techniques for helicopter transmission diagnostics[J]. Journal of Sound and Vibration, 2005,282: 475 -508.
  • 3Blunt D M, Keller J A. Detection of a fatigue crack in a UH- 60A planet gear carrier using vibration analysis [ J ]. Mechanical Systems and Signal Processing, 2006, 20:2095 -2111.
  • 4Rafiee J, Rafiee M A, Tse P W. Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J]. Expert Systems with Applications, 2010, 37: 4568 - 4579.
  • 5Wang D Y, Zhang W Z, Zhang J G, et al. Fault bearing identification based on wavelet packet transform technique and artificial neural network [ J ]. International Conference on System Science, Engineering Design and Manufacturing Informatization, 2010,2 (s) : 11 - 14.
  • 6Wu J D, Liu C H. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network [ J ]. Expert Systems with Applications, 2009, 36:4278 - 4286.
  • 7Wu J D, Liu C H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [ J ]. Expert Systems with Applications, 2008, 35:1200- 1213.
  • 8Saravanan N, Ramachandran K I. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN) [ J]. Expert Systems with Applications, 2010, 37 : 4168 -4181.
  • 9Wu J D, Huang C K, Chang Y W. Fault diagnosis for internal combustion engines using intake manifold pressure and artificial neural network [ J ]. Expert Systems with Applications, 2010, 37 : 949 - 958.
  • 10Wu J D, Kuo J M. An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network [ J ]. Expert Systems with Applications, 2009, 36 : 9776 - 9783.

同被引文献19

  • 1吕新华,武斌.一种长序列小波变换的快速实现方法[J].数据采集与处理,2006,21(1):86-89. 被引量:4
  • 2辛菁,刘丁,班建安.自适应卡尔曼滤波器在机器人控制中的应用[J].西安理工大学学报,2007,23(2):136-139. 被引量:8
  • 3秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004.
  • 4刘和平.数字信号处理器原理、结构及应用基础[M].北京:机械工业出版社,2006:18-89.
  • 5Poornachandra S. Wavelet-based denoising using subband dependent threshold for ECG signals[J].{H}DIGITAL SIGNAL PROCESSING,2008,(01):49-55.doi:10.1016/j.dsp.2007.09.006.
  • 6Qin Y,Tang B P,Wang J X. Higher-density dyadic wavelet transform and its application[J].{H}Mechanical Systems and Signal Processing,2010,(03):823-834.
  • 7Jones D L,Baraniuk R G. Efficient approximation of continuous wavelet transform[J].{H}Electronics Letters,1991,(09):748-750.
  • 8Unser M,Aldroubi A,Schiff S J. Fast implementation of the continuous wavelet transform with integer scales[J].{H}IEEE Transactions on Signal Processing,1994,(12):3519-3523.doi:10.1109/78.340787.
  • 9Mallat S. A theory for multi-resolution signal decomposition:the wavelet representation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,(04):674-693.
  • 10Mallat S. A wavelet tour of signal processing[M].New York:Academic Press,1998.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部