期刊文献+

基于多聚合过程神经元网络的宁东大气污染物浓度预测研究 被引量:2

Prediction and study of atmospheric pollutant concentration in ningdong based on multiple polymerization process neural network
下载PDF
导出
摘要 已有的基于人工神经网络对大气环境质量预测的研究大多只考虑空间特性,因此,无法准确刻画大气环境中污染物浓度随时间的动态变化规律,更不能实现影响污染物浓度诸因子在时间维上的有效预测。鉴于此,主要在时间、空间上对多聚合过程神经元网络模型进行多次训练与学习,并将训练好的模型对宁东能源化工基地大气环境中污染物SO2的浓度进行预测。仿真实验表明:多聚合过程神经元网络对于大气环境中SO2浓度具有较好的预测能力。 In recent years, artificial neural network have been only proposed for solving spatial case of the prediction of atmospheric pollutant concentration, which could not been accurately depicted dynamic change regulation of the atmospheric pollutant concentration in time-varying, So it was not desirable to forecast pollutant concentration in temporal. The purpose of this paper is to present multiple poly- merization process neural network model, which based on temporal and spatial scale. By training and learning repeatedly, the trained network model is derived. Then the model is used to forecast SO2 concentration of atmospheric environment in Ningdong Energy and Chemical Base. Simulation results of SO2 concentration demonstrate that the multi -aggregation process neural network is applicability and effectiveness to predict the concentration of the atmospheric environment.
出处 《贵州师范大学学报(自然科学版)》 CAS 2012年第5期98-102,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金项目(61063020)
关键词 多聚合过程神经元网络 大气环境质量 SO2浓度 梯度下降算法 multiple polymerization process neural network atmospheric environment SO2 concentration gradient descent algorithm
  • 相关文献

参考文献4

二级参考文献24

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2孙国.利用人工神经网络系统建立储层四维地质模型[J].油气地质与采收率,2004,11(3):4-6. 被引量:17
  • 3M.W.Gardner & S.R.Dorling. Artificial neural networks (the multilayerperceptron)-Areview of application in the atmospheric sciences[C]. Atmospheric Environment Vo132 .No 14/15 (1998):2627-2636.
  • 4J.C.Ruiz-Suarez,O.A.Mayora-Lbarra,J.Torres-Jimenez,L.G. Ruiz-Suarez. Short-term ozone forecasting by artificial neural networks[J]. Advances in Engineering Software (1995 ): 23 143-149.
  • 5M.W.Gardner, S.R.Dorling. Neural network modeling and prediction ofhourlyNOx andNOz concentrations in urban air in London. Atmospheric Environment (1999)33: 709- 719.
  • 6K.MMok, S.C. Tam. Short - term prediction of SO2 concentration in Macao with artificial neural networks[J].Energy and buildings 1998 (28): 279-286.
  • 7Box,G.E.P.,Jenkins,G.M. 1970Time Serics Analysis, Forecasting and Control.Holden-Day, San Francisco ,CA.
  • 8McCulloch W S,Pitts W H.A logical calculus of the ideas immanent in neuron activity.Bulletin Mathematical Biophysics,1943,5(1):115-133
  • 9Zhang Li I,Tao Huizhong W,Holt C E et al.A critical window for cooperation and competition among developing retinotectal synapses.Nature,1998,395(3):37-44
  • 10Waibel A et al.Phoneme recognition using time delay NN.IEEE Transactions on ASSP,1989,37(2):328-339

共引文献15

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部