期刊文献+

制冷系统优化及热力学分析

Optimization and thermo-dynamic analysis of the refrigerating system
下载PDF
导出
摘要 由于生产任务不足及工艺等方面原因,用于生产工艺冷却的制冷机组,常因制冷负荷偏小而停机,严重影响了生产工艺的安全与稳定运行.通过增设一旁路调节管路的方法,将部分冷却水引入到冷冻水系统中,解决了制冷机组停机问题,也避免了因其停机造成的经济损失.同时用热力学理论,对冷冻水系统中引入冷却水问题进行了讨论,获得了生产所需最小制冷负荷条件下引入冷却水量与制冷机组负荷率间的关系,及最大和最小引入冷却水量随制冷机组负荷率的变化关系,并最终确定了一个在整个生产波动范围内都不会停机的引入冷却水量,保证了生产运行的安全性和稳定性. Owing to underproduction and processes, the refrigerating equipment, by which the production processes are cooled, often stops. The production runs seriously bad. To solve this problem, a bypass is installed in the refrigerating system, and some cooling water is led to the chilled water system. Then, even if the production load changes greatly, the refrigerating equipment will not stop any more, and the production loss caused by the refrigerating stop has been avoided. According to thermodynamic theory, the issue about cooling water quantity, which is led from the cooling water system into the chilled water system, is analyzed. The led cooling water quantity at the minimum needed refrigerating load is ob- tained, and the maximum and minimum led cooling water quantities at different needed refrigerating loads are obtained too. Also, a certain led cooling water quantity, at which the refrigerating equipment will not stop any more on any needed refrigerating load, is determined. And the production running stability and security are ensured.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2012年第4期548-552,562,共6页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 十五科技攻关资助项目(2004BA604A-01)
关键词 制冷系统 优化 冷却水 冷冻水 安全性 稳定性 refrigerating system optimization cooling water chilled water security stability
  • 相关文献

参考文献21

  • 1郝正宇,刘建宇.约克制冷机组停机原因的分析及解决[J].数字石油和化工,2009(11):47-50. 被引量:1
  • 2王洪发,刘彦辉,胡龙军,仲涛.高温冷藏机组高压报警停机故障分析与排除[J].中国修船,2011,24(2):32-34. 被引量:1
  • 3李明艳.减少制冷系统膨胀机故障停机[J].油气田地面工程,2006,25(12):48-48. 被引量:2
  • 4EMMANUEL N C, AZRAIL A. Thermal response of thermoacoustic refrigerating system to variable loading[C]// Collection of Technical Papers - 5th International Energy Conversion Engineering Conference. New Jersey USA: A- merican Institute of Aeronautics and Astronautics Inc. 2007(2)..657-665,.
  • 5LAVRENCHENKOG K, ZMITROCHENKO J V, NESTERENKO S M, et al. Characteristics of voorhees refrig- erating machine with hermetic piston compressor producing refrigeration at one or two temperature levels[J]. Inter- national Journal of Refrigeration, 1997, 20(7):517-527.
  • 6BUYANOV Y L, VESELOVSKII A S, BAEV V P. Determination of the rdrigerating capacity of cryogenic gas machines for cooling current leads containing high-temperature superconductors[J]. Journal of Engineering Physics and Thermophysics, 2011, 84(3): 678-688.
  • 7ANDREY R, VJACHESLAV N. Investigation of the starting modes of the low-temperature refrigerating machines working on the mixtures of refrigerants[J]. International Journal of Refrigeration, 2009, 32(5) : 901-910.
  • 8McClain, RODNEY L. ARTURO P V, et al. Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data[J]. International Journal of Heat and Mass Transfer, 2001, 44(4)..763-770.
  • 9MASTRULLO R, MAURO A W, TINO Set al. A chart for predicting the possible advantage of adopting a suction/liq- uid heat exchanger in refrigerating system[J]. Applied Thermal Engineering, 2007, 27 (14/15) : 2443-2448.
  • 10LATRA B, ANDRE L. Modeling of an ejector rerigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a[J]. Applied Thermal Engineering, 2009, 29(2/3):265-274.

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部