期刊文献+

分枝杆菌噬菌体重组系统及其应用 被引量:4

Recombineering Based on Mycobacteriophage and Its Application
原文传递
导出
摘要 噬菌体是微生物遗传学研究的有力工具及源泉。分枝杆菌噬菌体也是构建分枝杆菌,尤其是结核分枝杆菌遗传研究工具的基础。目前,基于分枝杆菌噬菌体重组酶的重组系统是国际热点。总结了近年来基于分枝杆菌噬菌体Che9c重组酶gp60、gp61所构建的分枝杆菌重组工程体系及其在分枝杆菌基因组研究方面的应用,并结合实验室工作展望了其研究前景。该体系不依赖细菌自身的RecA系统,不需要限制性内切核酸酶和DNA连接酶,不需要复杂的体外操作,只需表达分枝杆菌噬菌体重组酶,从而使结核分枝杆菌基因敲除、基因敲入及点突变和构建分枝杆菌噬菌体突变株更方便。这为分枝杆菌及其噬菌体基因诱变及基因功能研究提供了迅捷的新途径。 Bacteriophage is a powerful tool to address fundamental genetics issues. This is true for Mycobacteriophages too, a well-documented resource for Mycobacterium tuberculosis genetics. Recent developments of mycobacterial recombineering system, which is based on mycobacteriophage Che9c-encoded proteins, are reviewed and its application in basic M. tuberculosis biology is outlined. The advantage of this system is that it is independent of bacterial recA system, restriction endonuclease and DNA ligase, and complex in vitro manipulation. The expression of Che9c-encoded exonuclease and recombinase could substantially complete the construction of gene knockouts or knock-ins, point mutants and mycobacteriophage mutants. The mycobacterial recombineering system is a facile new tool to study gene function and for mutation analysis.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2012年第9期101-106,共6页 China Biotechnology
基金 国家重要传染病十二五科技重大专项(2008ZX10003-006 2012ZX10003-003) 中央高校基本科研业务费专项资金(XDJK2009A003 XDJK2011D006 XDJK2011C020) 国家自然科学基金(81071316) 新世纪优秀人才资助计划(NCET-2011)资助项目
关键词 重组酶 同源重组 重组工程 分枝杆菌 Recombinase Homologous recombination Recombineering Mycobacterium
  • 相关文献

参考文献25

  • 1Court D L, Sawitzke J A, Thomason L C. Genetic engineering using homologous recombination. Annu Rev Genet, 2002,36 : 361-388.
  • 2Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet, 2001,2(10) : 769-779.
  • 3Sarov M, Schneider S, Pozniakovski A, et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods, 2006,3(10) : 839-844.
  • 4Yu D, Ellis H, Lee E. An efficient recombination system for chromosome engineering in Escherichia coll. Proceedings of the National Academy of Sciences of the United States of America, 2000,97 ( 11 ) : 5978.
  • 5Ellis H, Yu D, DiTizio T, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonueleotides. Proceedings of the National Academy of Sciences of the United States of America, 2001,98 (12) : 6742.
  • 6张雪,温廷益.Red重组系统用于大肠杆菌基因修饰研究进展[J].中国生物工程杂志,2008,28(12):89-93. 被引量:37
  • 7Datta S, Costantino N, Zhou X. Identification and analysis of recombineeriug functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Sciences, 2008,105 (5) : 1626.
  • 8Bouchard J, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology, 2000,270(1 ): 65-75.
  • 9Bae T, Baba T, Hiramatsu K, et al. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Molecular Microbiology, 2006,62(4) : 1035-1047.
  • 10Loessner M, Inman R, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage All8 of Listeria monocytogenes: implications for phage evolution. Molecular Microbiology, 2000,35 ( 2 ) : 324- 340.

二级参考文献16

  • 1Datta S, Costantino N, Court D L. A set of recombineering plasmids for gram-negative bacteria. Gene, 2006,379 : 109 - 115
  • 2Murphy K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 1998,180 ( 8 ) :2063 - 2071
  • 3Poteete A R. What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiol Lett,2001,201 ( 1 ) :9 - 14
  • 4Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet, 2001,2(10) :769 -779
  • 5Muniyappa K, Shaner S L, Tsang S S,et al. Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. Proc Natl Acad Sci U S A, 1984,81 (9) :2757 -2761
  • 6Takahashi N, Kobayashi 1. Evidence for the double-strand break repair model of bacteriophage λ. recombination. Proc Natl Acad Sci USA, 1990,87(7) :2790-2794
  • 7Murphy K C. Lambda Gam protein inhibits the helicase and chistimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol, 1991,173(18) :5808 -5821
  • 8Murphy K C. The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J Mol Biol, 2007,371 (1) :19 -24
  • 9Datsenko K A, Wanner B L. One- step inactivation of chromosomal genes in Escherichia coli K- 12 using PCR products. Proc Natl Acad Sci U S A, 2000,97 (12) :6640 -6645
  • 10Yuan L Z, Rouviere P E, Larossa R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng, 2006,8 ( 1 ) :79-90

共引文献36

同被引文献37

  • 1陈晓春,王继文,曹永长,毕英佐,马静云.噬菌体在疾病治疗方面的应用及研究[J].动物医学进展,2005,26(1):32-35. 被引量:27
  • 2Dye C, Williams BG. The population dynamics and control of tuberculosis. Science, 2010, 328(5980): 856- 861.
  • 3Boshoff HI, Barry CE. Tuberculosis - metabolism and respiration in the absence of growth. Nature Reviews Microbiology, 2005, 3 ( 1 ) : 70-80.
  • 4Munoz-Elias EJ, McKinney JD. Carbon metabolism of intracellular bacteria. Celhular Microbiology, 2006, 8 (1) : 10-22.
  • 5Munoz-Elias E J, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Medicine, 2005, 11(6) : 638-644.
  • 6Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC. Dual role of isocitrate lyase 1 in the giyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Molecular Microbiology, 2006, 61(4): 940-947.
  • 7Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Molecular Microbiology, 2006, 60 ( 5 ) : 1109- 1122.
  • 8Upton AM, McKinney JD. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium Smegmatis. Microbiology, 2007, 153 ( Pt 12) : 3973-3982.
  • 9Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9819-9824.
  • 10Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22) : 12959-12994.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部