期刊文献+

基于随机化回答模型的最低工资敏感性问题研究 被引量:3

The Study of Sensitive Questions in the Minimum Wage Based on Randomized Response Models
下载PDF
导出
摘要 针对最低工资调查中出现的敏感性问题,引入随机化回答技术,并针对定性和定量两类敏感性问题,分别引入不同的随机化回答模型。同时还考虑到最低工资调查中,不同调查单位对同一问题敏感程度不相同的特性,在定量问题的随机化回答模型中引入敏感性水平,对原有模型进行有效的改进,使被调查者能够更加积极配合最低工资调查,从而能够进一步减少由于各类敏感性问题造成的非抽样误差。这套随机化处理方法还可推广应用到其他类型的敏感性问题中。 In order to resolve sensitive questions in the survey Of minimum wage, randomized response techniques are introduced. Concretely, different randomized response models are applied to solve qualitative and quantitative sensitive questions. According to the particularity of the survey of minimum wage, different sample units have different sensitivity to the same sensitive question. Therefore, the sensitivisity level of different units is introduced to the conventional quantitative randomized model and the interviewee would cooperate with the survey of minimum wage much more. As a result, non--sampling error would be reduced much more.
出处 《统计与信息论坛》 CSSCI 2012年第9期3-7,共5页 Journal of Statistics and Information
基金 国家社会科学基金项目<我国最低工资调查方法与统计测算模型研究>(06BTJ017) 国家社会科学基金项目<我国经常性抽样调查制度与方法体系改革研究>(10CTJ006)
关键词 最低工资调查 敏感性问题 随机化回答 minimum wage survey sensitive question randomized response
  • 相关文献

参考文献14

  • 1韩兆洲,吴云凤,魏章进.劳动工资与社会保障[M].北京:经济科学出版社,2006.
  • 2Warner S L. Randomized Response. A Survey Technique for Eliminating Evasive Answer Bias [J]. Journal of the American Statistical Association, 1965(1).
  • 3科克伦,张尧庭.抽样技术[M].吴辉,译.北京:中国统计出版社,1985.
  • 4Chaudhuri A, Mukerjee R. Randomized Response Theory and Technique[M]. New York:Marcel Dekker, 1988.
  • 5Bar--Lev S K, Bobovich E, Boukai B. A Two --Stage Sequential Scheme for Wamers Response Modd[J]. Communications in Statistics --Theory and Methods, 2003(12).
  • 6Greenberg B G, Abulel A, Simmon W R, Horvit D G. The Unrelated Question Randomized Response Model: Theoretical Framework[J]. Journal of the American Statistical Association, 1969(6).
  • 7Greenberg B G, Kuebler R R, Abernathy J R, Horvitz D G. Application of the Randomized Response Technique in Ob- taining Quantitative Data[J]. Journal of the American Statistical Association, 1971(1).
  • 8Horvitz D G, Shah B V, Simmons W tL The Unrelated Randomized Response Model[J]. Proceedings of Social Statistics Section, American Statistical Association, 1967(1).
  • 9Himmelfarb S, Edgell S. Additive Constants Models: A Randomized Response Technique for Eliminating Evasiveness to Quantitative Response Questions[J]. Psychological Bulletin, 1980(1).
  • 10Eichhorn B H, Hayre L S. Scrambled Randomized Response Methods for Obtaining Sensitive Quantitative Data[J]. Journal of Statistical Planning and Inference, 1983(1).

二级参考文献19

  • 1邱东,徐强.全球公共品视角下的SNA[J].统计研究,2004,21(10):3-12. 被引量:15
  • 2蒋萍.非法生产与GDP[J].经济科学,2006(6):77-85. 被引量:10
  • 3.《中国统计年鉴》[M].,1983.323页.
  • 4联合国统计委员会.官方统计基本原则[EB/OL].http://unstats.un.org/unsd/methods/statorg/FP-Chinese.pdf,1999.
  • 5European Commission, IMF, OECD, United Nations, World Bank. System of National Accounts [ EB/OL ]. http://unstats, un. org/ unsd/nationalaccount/SNA2008, pdf,2008.
  • 6IMF. Data Quality Assessment Framework--Generic Framework [ EB/OL ]. http://dsbb, imf. org/images/pdfs/dqrs _ Genframework. pdf,2003.
  • 7IMF. Data Quality Assessment Framework for National Accounts Statistics[EB/OL]. http://dsbb, imf. org/images/pdfs/dqrs_nag. pdf,2003.
  • 8IMF. Data Quality Assessment Framework (DQAF) for the Consumer Price Index [ EB/OL ]. http://dsbb, imf. org/images/ pdfs/dqrs_cpi, pdf, 2003.
  • 9IMF. Data Quality Assessment Framework (DQAF)for the Producer Price Index [ EB/OL ]. http://dsbb, imf. org/images/pdfs/dqrs ppi. pdf, 2003.
  • 10IMF. Data Quality Assessment Framework (DQAF) for Government Finance Statistics [ EB/OL]. http://dsbb, imf. org/images/pdfs/ dqrs gfs. pdf, 2003.

共引文献29

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部