期刊文献+

混沌遗传最小二乘支持向量机法预测日用水量 被引量:2

Application of Chaos Genetic Algorithm and Least Squares Support Vector Machine Method in Daily Water Consumption Prediction
下载PDF
导出
摘要 利用混沌运动的初值敏感性、内在随机性和遍历性的特点,提出基于混沌遗传算法和最小二乘支持向量机的城市日用水量预测法。通过混沌映射搜索自适应遗传算法的较优初始种群,采用自适应遗传算法优化最小二乘支持向量机的超参数,利用交叉验证法确定遗传算法个体的适应值,建立基于最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更高的预测精度。 Using the characteristics of sensitive dependence on initial conditions, intrinsic stochastic property and ergodicity ot cnaonc motion, a forecasting method for city daily water consumption based on chaos genetic algorithm and least squares support vector machine (LSSVM) is proposed in this paper. The chaotic map is used to search the optimal initial population of self-adaptive genetic al- gorithm (AGA), the AGA is introduced to optimize the hyper-parameters of LSSVM, and the individual fitness values in AGA are determined by cross-validation. Then the LSSVM-based daily water consumption forecasting model is built. The case study shows that the proposed method based on chaos GA and LSSVM has better estimating performance than the genetic LSSVM-based method.
作者 陈磊 余翔
出处 《节水灌溉》 北大核心 2012年第9期4-7,共4页 Water Saving Irrigation
基金 国家自然科学基金资助项目(50078048) 浙江工业大学校基金重点项目(20100245)
关键词 遗传算法 混沌 最小二乘支持向量机 日用水量 genetic algorithm chaos least squares support vector machine daily water consumption
  • 相关文献

参考文献13

二级参考文献43

  • 1俞亭超,张土乔,柳景青.峰值识别的SVM模型及在时用水量预测中的应用[J].系统工程理论与实践,2005,25(1):134-139. 被引量:7
  • 2王亮,张宏伟,牛志广.支持向量机在城市用水量短期预测中的应用[J].天津大学学报,2005,38(11):1021-1025. 被引量:17
  • 3杨道辉,马光文,刘起方,陶春华,过夏明.基于粒子群优化算法的BP网络模型在径流预测中的应用[J].水力发电学报,2006,25(2):65-68. 被引量:43
  • 4Bishop C M. Neural network for pattern recognition [ M ]. New York:Oxford University Press, 1995.
  • 5Schiolkopf B, Smola A. New support vector algorithms [ J ]. Neural Computation,2000, 12 (5) : 1207 -1245.
  • 6Vapnik V N. The nature of statistical learning theory [ M ]. New York:Springer, 1995.
  • 7Scholkopf B, Burges C, Smola A. Advances in kernel methods-support vector learning [ M ]. Cambridge, MA : MIT Press,1999.
  • 8Smola A, Schtilkopf B. On a kernel-based method for pattern recognition, regression, approximation and operator inversion[J]. Algnrithmica, 1998, 22(1-2) :211-231.
  • 9HAYKINS.NeuralNetworksAComprehensiveFoundation,(神经网络的综合基础)[M].清华大学出版社,2001.156255.
  • 10张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003..

共引文献61

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部