期刊文献+

基于离散PSO的软测量辅助变量选择算法 被引量:1

Selection of Secondary Variables Based on Discrete PSO in Soft-sensing
下载PDF
导出
摘要 工业对象的复杂化带来了可测变量的增多,这些变量集合中大量冗余的信息会降低软测量建模的精度。针对这个问题,提出了基于离散PSO的软测量辅助变量选择算法。算法将传统PSO连续的优化过程通过对粒子位置的隶属度计算,将其离散成0或1。0、1分别表示某变量未被选中和被选中,每个粒子就代表一种变量选取情况。将PLS回归用于适应度函数的计算,有利于克服多元回归中多重共线问题。最后,将该算法用在了丙烯精馏塔塔顶丙烯浓度的软测量实验中,实验结果表明该方法有效,并提高了模型的预测精度。 The complication of the industrial objects leads to a large number of measurable variables. The redundant information in the variables set may reduce the precision of soft-sensing model. To solve this problem, an algorithm based on discrete PSO was proposed to select secondary variables. Traditional optimization process of continuous PSO was divided into 0 or 1 via the membership degree calculation of the particle. The value of 0 or 1 denotes whether a variable was selected. Each particle position would represent a kind of variables selection. The PLS used in the fitness function could overcome the problem of collinearity in multivariable regression. Finally, the proposed algorithm was applied in soft-sensing modeling to predict the propylene concentration. The experiment results indicate that the proposed algorithm can improve the precision of prediction.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第10期2121-2125,共5页 Journal of System Simulation
基金 国家自然科学基金(61203072) 江苏省高校自然科学基金(09KJB510003)
关键词 离散粒子群优化算法 辅助变量选择 软测量 部分最小二乘法 discrete PSO selection of secondary variables soft-sensing PLS
  • 相关文献

参考文献12

  • 1李川,王时龙,张贤明.基于多关联向量机的动态软测量建模[J].系统仿真学报,2009,21(12):3513-3517. 被引量:4
  • 2Xu Lu, Zhang Wenjun. Comparison of different methods for variable selection [J]. Analytica Acta (S0003-2670), 2001, 446(1-2): 477-483.
  • 3Gauchi J P, Chagnon P. Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2001, 58(2): 171-193.
  • 4刘瑞兰,陈渭泉,苏宏业.基于改进GA-PLS算法的最优辅助变量选择及其在软测量建模中的应用[J].南京邮电大学学报(自然科学版),2006,26(1):76-80. 被引量:5
  • 5Yasri A, Hartsough D. Toward an optimal procedure for variable selection and QSAR model building [J]. J. Chem. Inf. Comput. Sci., 2001, 41(5): 1218-1227.
  • 6张大仁,赵立新.基于遗传算法的PLS分析在QSAR研究中的应用[J].环境科学,2000,21(6):11-15. 被引量:7
  • 7Kubinyi H. Evolutionary variable selection in regression and PLS analyses [J]. Journal of Chemometrics, 1996, 10(2): 119-133.
  • 8Qi Shen, Jian Huijiang, Chen Xujiao, et al. Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists [J]. European Journal of Pharmaceutical Sciences (S0928-0987), 2004, 22(2-3): 145-152.
  • 9Kennedy J, Eberhart R. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks, Perth, Australia. USA: IEEE, 1995: 1942-1948.
  • 10Hasegawa K, Miyashita Y, Funatsu K. GA Strategy for Variable Selection in QSAR Studies: GA-Based PLS Analysis of Calcium Channel Antagonists [J]. Journal of Chemical Information and Computer Sciences (S0095-2338), 1997, 37(2): 306-310.

二级参考文献21

共引文献15

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部