期刊文献+

基于SIFT特征匹配与K-均值聚类的运动目标检测 被引量:14

Moving object detection based on SIFT features matching and K-means clustering
下载PDF
导出
摘要 运动摄像机情况下的运动目标检测是视频监控中的难点和热点问题。为了能够有效地检测出运动目标,根据视频中背景与运动目标的速度不同这一特点,提出了一个基于尺寸不变特征变换(SIFT)和K-均值聚类的运动目标检测方法。首先提取视频中相邻两帧图像的SIFT特征点并进行匹配,并计算匹配特征点的运动速度,最后将运动目标和背景上的SIFT特征点K-均值聚类分析,在单运动目标、多运动目标和带有摄像头旋转情况下做了实验。实验结果表明,提出的目标检测算法能够在运动背景下较好地检测到目标并保留稳定的目标局部特征,对于摄像机运动、摄像机旋转、亮度变化等影响因素具有较强的适应能力。 It is a difficult and hot topic in video surveillance to detect moving objects with moving camera. In order to detect moving objects effectively, according to the characteristics of the different speed between the background and moving target, a method was proposed based on Scale Invariant Feature Transform (SIFT) features matching and K-means clustering. The SIFT features of the two adjacent frames in the video were extracted and matched firstly. After that the velocity of the matched SIFT features were computed. Finally the K-means clustering method was used to analyze the SIFT features of the moving objects and background and experiments were done in the cases of single moving object and muhiple moving objects and when the camera was rotated. The experimental results demonstrate that, the proposed method can detect targets effectively and remain the stable local features of targets in moving background and have good adaptability to changing illumination and camera movement and rotation.
作者 李广 冯燕
出处 《计算机应用》 CSCD 北大核心 2012年第10期2824-2826,共3页 journal of Computer Applications
关键词 视频监控 运动摄像机 运动目标检测 尺度不变特征变换特征 K-均值聚类 video surveillance moving camera moving object detection Scale Invariant Feature Transform (SIFT) feature K-means clustering
  • 相关文献

参考文献13

  • 1DORETrO G, CHIUSO A, WU Y N, et al. Dynamic textures[ J]. In- ternational Journal of Computer Vision, 2003,51 (2) : 91 - 109.
  • 2曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 3RADKE R J, ANDRA S, AL-KOFAHI O, et al. Image change detec- tion algorithms: a systematic survey[ J]. IEEE Transactions on Image Processing, 2005, 14(3) : 1 - 14.
  • 4ELHABIAN S Y, EL-SAYED K M, AHMED S H. Moving object detec- tion in spatial domain using background removal techniques state of art [ J]. Recent Patents on Computer Science, 200-, 1 (1) : 32 - 54.
  • 5朱碧婷,郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法[J].中国图象图形学报,2008,13(10):1906-1909. 被引量:21
  • 6ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estima- tion for visual surveillance[ J]. Proceedings of the IEEE, 2002, 90(7) : 1151 -1163.
  • 7KATO J, WATANABE T, JOGA S, et al. An HMM-based segmentation method for traffic monitoring movies[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9) : 1291 - 1296.
  • 8LOWED G. Object recognition from local scale-invariant features [ C]// ICCV'99: Proceedings of the International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 1999, 2:1150 -1157.
  • 9YU XIA-QIONG, CHEN XIANG-NING, XU HONG-QING, et al . Moving object detection from moving camera sequences[ C]// Pro- ceedings of the Sixth International Symposium on Precision Engineer- ing Measurements and Instrumentation, SPIE 7544. [ S. 1. ] : SPIE, 2010:381 -386.
  • 10王亮芬.基于SIFT特征匹配和动态更新背景模型的运动目标检测算法[J].计算机应用与软件,2010,27(2):267-270. 被引量:18

二级参考文献28

  • 1曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 2Jun-ZhouHuang,Tie-NiuTan,LiMa,Yun-HongWang.Phase Correlation Based Iris Image Registration Model[J].Journal of Computer Science & Technology,2005,20(3):419-425. 被引量:3
  • 3赖作镁,王敬儒,张启衡.基于鲁棒背景运动补偿的运动目标检测算法[J].计算机应用研究,2007,24(3):66-68. 被引量:10
  • 4丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 5Fabian Campbell-West,Paul Miller. Independent Moving Object Detection using a Colour Background Model [ C ]//Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. Sydney : IEEE ,2006 :31 - 31.
  • 6Ashraf Elinagar, Anup Basu. Robust Detection of Moving Objects by a Moving Observer on Planar Surfaces [ C ]//IEEE international Conference on Robotics and Antomation. Nagoya, Aichi, Japan: IEEE, 1995: 2347 - 2352.
  • 7Jin Sunglee, Kwang-Yeon Rhee, Seong-Dae Kim. Moving Target Tracking Algorithm Based on The Confidence Measure of Motion Vectors [ C ]//Proc. IEEE International Conference on Image Processing. Thessaloniki, Greece : IEEE ,2001:369 - 372.
  • 8Zhaozheng Yin, Robert Collins. Moving Object Localization in Thermal Imagery by Forward-backward MHI [ C ]//Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition. New York:IEEE ,2006 : 133 - 133.
  • 9Ninad Thakoor, Jean Gao. Automatic Video Object Shape Extraction and Its Classification With Camera In Motion [ C ]//Proc. IEEE International Conference on Image Processing, Genova: IEEE, 2005:437 - 440.
  • 10Lucas B, Kanade T. An iterative image registration technique with application to stereo vision [ C ]//International Joint Conference on Artificial Intelligence. Vancouver: IEEE, 1981:674 - 679.

共引文献68

同被引文献95

  • 1于金霞,蔡自兴,段琢华.基于激光雷达的移动机器人运动目标检测与跟踪[J].电子器件,2007,30(6):2301-2306. 被引量:9
  • 2朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 3Shih-Chia Huang. An Advanced Motion Detection Algorithm with Video Quality Analysis for Video Surveillance Systems[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,(01):1-14.
  • 4Yi-Min Tsai,Chih-Chung Tsai,Keng-Yen Huang. An Intelligent Vision-based Vehicle Detection and Tracking Sys-tem for Automotive Applications[A].Seoul,Korea:IEEE,2011.113-114.
  • 5Sivic J, Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos [ C ]//ICCV, Vol. 2, 2003 : 1470 - 1477.
  • 6Philbin J, Chum O, Isard M, et al. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases [ C ]// CVPR, 2008.
  • 7Nisiar D, Stew6nius H. Scalable Recognition with a Vocabulary Tree [C]//CVPR, Vol. 2, 2006:2161-2168.
  • 8Sehindler G, Brown M, Szeliski R. City-Scale Location Recognition [ C]//CVPR, 2007.
  • 9Liefu Ai, Junqlng Yu, Tao Guan. Spherical Soft Assignment: Impro- ving Image Representation in Content-Based Image Retrieval [ C ]// 13^th Pacific-Rim Conference on Multimedia, 2012:801 -810.
  • 10Herve Jegou, Matthijs Douze, Cordelia Sehmid, et al. Improving Bag- of-Features for Large Scale Image Search [ J]. International Journal of Computer Vision, 2010,87 (3) : 316 - 336.

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部