摘要
在分析差分演化(DE)进化方式基础上,首先利用自加速性改进差异算子与选择算子,然后结合变邻域搜索改善算法的局部搜索能力,提出了一种具有自加速特性与变邻域搜索能力的差分演化算法(SAVNDE);基于DE的三种进化模式,利用5个Benchmark测试函数进行对比计算,实验结果表明:SAVNDE在保持了DE原有特性基础上,以较快的速度获得更好的结果。
The evolutionary mode of Differential Evolution (DE) was analyzed, and modified differentiation operator and selection operator with self-accelerated characteristic were proposed. Then the Self-Accelerated and Variable Neighbourhood searching of Differential Evolution (SAVNDE) algorithm was advanced using these new operators and variable neighbourhood search which improved the local search ability of algorithm. On the basis of the three evolution models, the simulation results on five classical benchmark functions show that SAVNDE has the same convergence rate of DE, and can achieve more optimization results in shorter time.
出处
《计算机应用》
CSCD
北大核心
2012年第10期2911-2915,2919,共6页
journal of Computer Applications
基金
河北省高等学校科学技术研究项目(Z2011143)
关键词
差分演化
进化模式
自加速特性
变邻域搜索
Benchmark函数
Differential Evolution (DE)
evolution model
self-accelerated characteristic
variable neighborhood search
Benchmark function