期刊文献+

基于窗口斜率表示法的心电波形相似性分析 被引量:4

ECG waveform similarity analysis based on window-slope representation
下载PDF
导出
摘要 针对心电波形形态相似度高和分类困难的问题,提出一种新的心电波形特征表示方法———窗口斜率法。该方法对心电波形在平面内进行窗口划分,以每个窗口内最大最小幅值差与窗口宽度的比值作为心电波形的特征信息,进行相似性分析。实验结果表明,在基于距离的分类方法中,这种特征表示方法在降低维度同时,能够减小同类波形之间的差距,扩大不同类波形之间的差距。将此方法用于心电波形的分类,可以提高分类的准确性和效率,以及分类灵敏度和特异度的稳定性。 It is often difficult to classify Electrocardiogram (ECG) waveform automatically due to high similarity. A new feature representation of ECG waveform was proposed -- window-slope method. In this method, an ECG waveform was divided into different windows in a plane, and the slope of maximum and minimum amplitude in a window was extracted as feature information to perform similarity analysis. The experimental results show that the method can not only reduce the dimension, but also can enlarge the difference between different types of waveforms under distance-based classification. The classification accuracy and efficiency can be improved by using the method; meanwhile the sensitivity and specificity of classification can be stabilized at a higher level.
出处 《计算机应用》 CSCD 北大核心 2012年第10期2969-2972,共4页 journal of Computer Applications
基金 天津市自然科学基金资助项目(10JCYBJC00700) 天津市科委科技支撑重点项目(10ZCKFSF00800)
关键词 相似性分析 心电波形 特征表示 降维 分类 similarity analysis Electrocardiogram (ECG) waveform feature representation dimensionality reduction classification
  • 相关文献

参考文献14

  • 1TADEJKO P, RAKOWSKI W. Hybrid wavelet--mathematical mor-phology feature extraction for heartbeat classification[ C]// Proceed- ings of International Conference on Computer as a Tool. Washing- ton, DC: IEEE Computer Society, 2007:127 - 132.
  • 2MESSADEG D J, SNANI C, BEDDA M. An approach for ECG classification using wavelets and Markov Model[ C]//Proceedings of International Conference on Information and Communication Tech- nologies: from Theory. to Applications. Washington, DC: IEEE Computer Society, 2006:1910 - 1913.
  • 3曹玉珍,李广,范增飞.基于小波变换特征提取的支持向量机心搏分类研究[J].天津大学学报,2007,40(7):811-815. 被引量:5
  • 4ELSAYAD A M. Classification of ECG arrhythmia using learning vector quantization neural networks[ C]//ICCES'09: Proceedings of 2009 International Conference on Computer Engineering and Sys- tems. Washington, DC: IEEE Computer Society, 2009:139 - 144.
  • 5NAIT-HAMOUD M C, MOUSSAOUI A. Two novel methods for multiclass ECG arrhythmias classification based on PCA, fuzzy sup- port vector machine and unbalanced clustering[ C]//Proceedings of 2010 International Conference on Machine and Web Intelligence. Washington, DC: IEEE Computer Society, 2010:140 - 145.
  • 6谢亮,汪晓东.基于改进的快速独立分量分析与支持向量机的ECG分类诊断[J].仪器仪表学报,2009,30(12):2599-2604. 被引量:8
  • 7SHEIKH R R, TAJ I A. Cardiac disorder diagnosis based on ECG segments analysis and classification[ C]// Proceedings of Third In- ternational Conference on Electrical Engineering. Washington, DC: IEEE Computer Society, 2009:1 -6.
  • 8SHEN J, BAO S D, YANG L C, et al. The PLR-DTW method for ECG based biometric identification[ C]//Proceedings of 53rd Annu- al International Conference of the IEEE Engineering in Medicine and Biology Society. Washington, DC: IEEE Computer Society, 2011: 5248 - 5251.
  • 9LINZ T, GE Y Z, TAO G L. Algorithm for clustering analysis of ECG data[ C]// Proceedings of 27th Annual International Confer- ence of the IEEE Engineering in Medicine and Biology Society. Washington, DC: IEEE Computer Society, 2005:3857 -3860.
  • 10CHANG K C, LEE R G, WEN C, et al. Comparison of similarity measures for clustering electrocardiogram complexes[ C ]// Proceed- ings of 2005 Computers in Cardiology. Washington, DC: IEEE Com- puter Society, 2005:759-762.

二级参考文献29

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 3CEYLAN R, OZBAY Y, KARLIK B. A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network[J]. Expert Systems with Applications, 2008,36(3):6721-6726.
  • 4DE LATHAUWER L, MOOR B DE, VANDEWALLE J. Fetal electrocardiogram extraction by blind source subspace separation[J]. Biomedical Engineering, 2000,47(5): 567-572.
  • 5WANG Z S, HE Z Y, CHEN J Z. Blind EGG separation using ICA neural networks[C]. Proceeding-19th Annual International Conference of the IEEE-EMBS, 1997,3:1351-1354.
  • 6VIGARIO R, SARELA J, JOUSMAKI V, et al. Independent component approach to the analysis of EEG and EMG recording[J]. Biomedical Engineering, 2000,47(5): 589-593.
  • 7OWlS M I, YOUSSEF A M, KADAH Y M. Characterization of ECG signals based on blind source separation[J] Medical and Biological Engineering and Computing, 2002,40(5):557-564.
  • 8YU S N, CHOU K T. Integration of independent component analysis and neural networks for ECG beat classification[J]. Expert Systems with Applications, 2008,34(4): 2841-2846.
  • 9HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. Neural Networks, 1999,10(3):626-634.
  • 10GULER A, UBEYLI E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recognition, 2005,38(2): 199-208.

共引文献27

同被引文献40

  • 1董晓莉,顾成奎,王正欧.基于形态的时间序列相似性度量研究[J].电子与信息学报,2007,29(5):1228-1231. 被引量:34
  • 2温福喜,刘宏伟.基于2D-PCA和2D-LDA的人脸识别方法[J].计算机应用研究,2007,24(8):201-203. 被引量:7
  • 3WANGWenjune,YEYunchi.FeatureselectionalgorithmforECGsignalsusingrangeoverlapsmethod[J].ExpertSystemswithApplications,2010,37(4):2088-2096.
  • 4MARTISRJ,CHAKRABORTYC,RAYAJ.AtwostagemechanismforregistrationandclassificationofECGusingGaussianmixturemodel[J].PatternRecognition,2009,42(11):2979-2988.
  • 5UBEYLIED.ECGbeatsclassificationusingmulticlasssupportvectormachineswitherrorcorrectingoutputcodes[J].DigitalSignalProcessing,2006,17(3):675-684.
  • 6YUSungnien,CHOUKuanto.SelectionofsignificantindependentcomponentsforECGbeatclassification[J].ExpertSystemswithApplications,2009,36(2):2088-2096.
  • 7EBRAHIMZADEHAA,KHAZAEEA.DetectionofprematureventricularcontractionsusingMLPneuralnetworks:acomparativestudy[J].Measurement,2010,43(1):103-112.
  • 8KORUREK M,DOGAN B.ECG beatclassificationusingparticleswarmoptimizationandradialbasisfunctionneuralnetwork[J].ExpertSystemswithApplications,2010,37(12):7563-7569.
  • 9WEIJiang,KONGSong.BlockbasedneuralnetworksforpersonalizedECGsignalclassification[J].IEEE TransonNeuralNetworks,2007,18(6):1750-1761.
  • 10Yeh Y C, Wang W J,Chiou C W. Feature selection algorithm for ECGsignals using range-overlaps method[ J]. Expert Systems with Ap-plications,2010,37(4) :2088-2096.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部