期刊文献+

采样级数对高维平稳过程的逼近

Approximation of Multidimensional Stochastic Processes by Sampling Series
下载PDF
导出
摘要 香农采样定理是信号处理的基石,现实中的信号多是高维随机的,采样时也会有诸多干扰因素,并且经典采样级数中对sinc函数的处理也是比较繁琐的,为此,用sinc函数的Taylor展式对其进行逼近,对变动后的高维随机过程采样级数进行了误差分析,得到了时间扰动误差的误差上界。 Shannon sampling theorem is the cornerstone of signal processing. However it's the multidimensional stochastic signal more common. Besides, there are many factors affecting its accuracy, in addition, it's tedious to deal with the sinc function occurring in the sampling se- ries. With regards to this, in this paper the sinc function is approximated by the finite sum of its Taylor series expansion, and then the error analysis of the improved sampling series is car tied out.
作者 叶茜
机构地区 天津大学理学院
出处 《云南师范大学学报(自然科学版)》 2012年第5期52-58,共7页 Journal of Yunnan Normal University:Natural Sciences Edition
关键词 采样定理 高维随机过程 sinc函数 时间扰动误差 jitter errorSampling theorem Multidimensional stochastic process Sine function Time--
  • 相关文献

参考文献8

  • 1KOLMOGOROV A N.On the Shannon theory of transmission in the case of continuous signals[J].TRE TransInform Theory,1956,2(4):102-108.
  • 2BUTZER P L,ENGELS W.On the Implementation of the Shannon Sampling Series[J].IEEE Trans InformTheory,1983,29(2):314-317.
  • 3BUTZER P L,ENGELS W,SCHEBEN U.Magnitude of the truncation error in sampling expansion of bandlim-ited signals[J].IEEE Trans.Acoust.Speech Proc,1982,30(6):906-912.
  • 4SONGZ,YANG S,ZHOU X.Approximation of signals from local average[J].Applied Mathematics Letters,2006,19(12):1414-1420.
  • 5HE G,SONG Z.Approximation of WSK sampling theorem on random signals[J].Numerical Functional Analy-sis and Optimization,2011,32(4):397-408.
  • 6YA OLENKO A,POGANY T K.On sharp exact bounds for remainders in multidimensional sampling theorem[J].Sampl.Theory Signal Image Process,2007,6(3):249-272.
  • 7YA OLENKO A.POGANY T K.Convergence Rate in Multidimensional Irregular Sampling Restoration[J].J.Math.Inequal,2009,3(4):567-576.
  • 8王梓坤.概率论基础及应用[M].北京:科学出版社,1976.1~60

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部