摘要
研究了传输概率未知的具有马尔科夫跳跃的时滞系统的稳定性与镇定性问题.首先基于新引入的不等式条件和新构造的李雅普诺夫泛函,并结合自由矩阵的引入,得到了依赖于时滞的线性矩阵不等式稳定性条件.然后基于得到的稳定性条件,利用矩阵分析的技巧设计出依赖于模型变化的控制器.最后通过数值实例验证了所得结果的优越性和可行性.
This paper addresses the problem of the delay - dependent stability for Markovian jump delayed systems with partial information on transition probability. First, combined the new constructed Lyapunov functional with the introduced free matrices, using the introduced inequalties rule and the analysis technique of matrix inequalities, the delay -dependent stability conditions are obtained. Second, based on the stability results, the model -dependent controllers are designed by the technology of inequalities of matrices. Finally, the numerical example is given to show the validity and potential of the developed criteria.
出处
《云南民族大学学报(自然科学版)》
CAS
2012年第5期350-355,共6页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11126305)
云南省自然科学基金(2011FZ172)
云南民族大学青年基金(11QN07)
关键词
稳定性与镇定性
马尔科夫跳跃系统
传输概率未知
线性矩阵不等式
时滞依赖稳定性
stability and stabilization
markovian jump systems
partial information on transition probability
linearmatrix inequality(LMI)
delay - dependent stability.