期刊文献+

一类倒向随机微分方程对应的二阶偏微分方程的粘性解

BSDEs and Viscosity Solutions of the Associated System with Partial Integro-Differential Equations
下载PDF
导出
摘要 讨论了一类带有Lévy过程的正倒向随机微分方程对应的二阶偏微分方程的粘性解.在系数满足Lipschitz条件下,证明了粘性解的存在性及惟一性. An existence result and A uniqueness result of a backward stochastic differential equation driven by Teugels martingales associated with a Levy process were obtained. It is also shown that under some conditions the solution of the BSDE provides a unique viscosity solution of the associated system with par tial integro-differential equations.
作者 冉启康
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第9期1522-1528,共7页 Journal of Shanghai Jiaotong University
关键词 正倒向随机微分方程 Teugel鞅 积分-微分型二阶偏微分方程 粘性解 forward-backward stochastic differential equations Teugel's martingales partial integro differential equations viscosity solutions
  • 相关文献

参考文献10

  • 1Pardoux E,Peng S G.Adapted solution of a backward stochastic differential equation[J].Syst Control Lett,1990,14(1):55-61.
  • 2Bahlali K,Eddahbi M,Essaky E.BSDE associated with Lévy processes and application to PDIE[J].Journal of Applied Mathematics and Stochastic Analysis,2003,16(1):1-17.
  • 3Otmani M E.Backward stochastic differential equations associated with Lévy processes and partial integro-differential equations[J].Communications on Stochastic Analysis,2008(2):277-288.
  • 4Barles G,Buckdahn R,Pardoux E.Backward stochastic differential equations and integro-partial differential equations[EP/OL].(2009-06-30)[2011-01-21].www.cmi.univ-mrs.fr/pardous/bbp.pdf.
  • 5Nualart D,Schoutens W.Chaotic and predictable representations for Lévy processes[J].Stoc,Proc Appl,2000,90(1):109-122.
  • 6Protter P,Talay D.The Euler scheme for Lévy driven stochastic differential equations[J].Ann Proba,1997,25(1):393-423.
  • 7Fujiwara T,Kunita H.Stochastic differential equations of jump type and Lévy processes in diffeomorphism group[J].J Math Kyoto Univ,1989,25(1):71-106.
  • 8Huaibin TANG Zhen WU.STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM WITH LEVY PROCESSES[J].Journal of Systems Science & Complexity,2009,22(1):122-136. 被引量:7
  • 9Crandall G M,Hitoshi Ishii,Pierre-Louis Lions.User’s guide to viscosity solutions of second order partial differential equations[J].Bull Amer Soc,1992,27(1):1-67.
  • 10Nualart D,Schoutens W.Backward stochastic differential equations and Feynman-Kac formula for Lévy processes with applications in finance[J].Bernoulli,2001,5:761-776.

二级参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部