摘要
讨论了一类带有Lévy过程的正倒向随机微分方程对应的二阶偏微分方程的粘性解.在系数满足Lipschitz条件下,证明了粘性解的存在性及惟一性.
An existence result and A uniqueness result of a backward stochastic differential equation driven by Teugels martingales associated with a Levy process were obtained. It is also shown that under some conditions the solution of the BSDE provides a unique viscosity solution of the associated system with par tial integro-differential equations.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2012年第9期1522-1528,共7页
Journal of Shanghai Jiaotong University
关键词
正倒向随机微分方程
Teugel鞅
积分-微分型二阶偏微分方程
粘性解
forward-backward stochastic differential equations
Teugel's martingales
partial integro differential equations
viscosity solutions