期刊文献+

基于特征参数分布的机载电子设备故障诊断与预测 被引量:6

Feature Parameter Distribution Based Diagnostics and Prognostics of Aviatic Electronics
原文传递
导出
摘要 基于特征参数趋势进化的故障预测是一种有效的方法,引入了一种考虑特征参数概率分布的新型判据进行多故障模式诊断与预测.基于过程神经网络建立了高精度预测模型,根据模型和部件使用记录进行趋势预测.基于方法对机载电子设备进行案例研究,结果表明,方法的判定结果更加符合多故障模式并存、故障严重程度不同的实际情况,而具有较高拟和、泛化预测精度的PNN模型是一种有效的趋势预测方法. Prognostics based on feature parameter trend evolution is an effective method, a new fault judgement integrated with feature parameter distribution is introduced to implement multi-modes diagnostics and prognostics. A more precise forecast model is built based on procedure neural network, and trend forecast is performed based on both the model and usage record of feature parameters. The way researched above is applied in a control-transfer component to set an research example. Researchs show that results aquired by this method are more according with the actual situation in which there are more than one fault modes that are of different severity, and PNN model is an effective trend forecast method as it's of higher accuracy in both approximating and extended forecasting.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第18期69-75,共7页 Mathematics in Practice and Theory
基金 空军重点科研项目(KJZ06119)
关键词 故障预测 故障诊断 电子设备 特征参数分布 故障判据 过程神经网络(PNN) prognostics diagnostics electronics feature parameter distribution fault judge-ment Procedure Neural Network(PNN)
  • 相关文献

参考文献10

  • 1Roemer M J, Byington C S, Kacprzynski G J, et al. An overview of selected prognostic technologies with reference to an integrated PHM architecture[C]//Proceedings of IEEE Aerospace, 2005: 1-15.
  • 2孙博,康锐,张叔农.基于特征参数趋势进化的故障诊断和预测方法[J].航空学报,2008,29(2):393-398. 被引量:16
  • 3郑小霞,钱锋.基于粗糙决策模型和蚁群算法的故障诊断[J].系统工程理论与实践,2007,27(3):140-144. 被引量:7
  • 4Vichare N, Rodger P, Eveloy V, and Pecht M, Environment and Usage Monitoringof Electronic Products for Health Assessment and Product Design[J]. International Journal of Oualitv Technology and Ouantitative Management, 2007, 4(2): 235-250.
  • 5Roemer M J, Nwadiogbu E O, Bloor G. Development of diagnostic and prognostic technologies for aerospace health management applications[C]//[]Proceedings of IEEE Aerospace Conference, 2001: 3139-3147.
  • 6Orsagh R, Brown D, Roemer M J, et al. Prognostic health management for avionics system power supplies[C]//Proceedings of IEEE Aerospace Conference, 2005: 3585-3591.
  • 7Lopez L. Advanced electronic prognostics through system telemetry and pattern recognition meth- ods[J]. Microelectronics Reliability, Electronic System Prognostics and Health Management, 2007, 47(12): 1865-1 873.
  • 8Roemer M J, Kacprzynski G J. Advanced diagnostics and prognostics for gas turbine engine risk assessment[C]//Proceedings of IEEE Aerospace Conference, 2000: 345-353.
  • 9何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44. 被引量:143
  • 10何新贵,许少华.一类反馈过程神经元网络模型及其学习算法[J].自动化学报,2004,30(6):801-806. 被引量:15

二级参考文献28

  • 1覃方君,田蔚风,李安,卞鸿巍.基于蚁群算法的复杂系统多故障状态的决策[J].中国惯性技术学报,2004,12(4):12-15. 被引量:6
  • 2刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 3曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 4Zhang L I,Nature,1998年,395卷,37页
  • 5Pawlak Z W.Rough sets[J].International Journal of Information and Computer Science,1982,11(5):341-356.
  • 6Pawlak Z W.Rough Sets Theoretical Aspects of Reasoning about Data[M].Kluwer Academic Publishers,1991.
  • 7Quinlan J R.Induction of decision trees[J].Machine Learning,1986(4):81-106.
  • 8Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceeding of First Europe Conference on Artificial Life.Paris,1991:134-142.
  • 9谢劲松.失效模型的形式与实时故障诊断预测的基本方法和技术[C]//中国电子学会第十一届全国可靠性物理学术讨论会论文集.浙江温州,2005:283-290.
  • 10马静华,谢劲松,康锐.电子产品健康监控和故障预测的流程和案例[C]//中国航空学会可靠性工程专业委员会第十届学术年会论文集.北京:国防工业出版社,2006.

共引文献172

同被引文献33

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部