期刊文献+

一类非自治无时滞捕食食饵模型的持久性 被引量:1

Permanence For a Non-Autonomous Predator-Prey System with Predator Density-Independent
原文传递
导出
摘要 主要针对一类非自治食饵具有阶段结构的捕食者非密度制约的捕食食饵模型进行了分析讨论,得到了种群灭绝以及持久的积分形式的充分条件,把捕食者密度制约的一些重要结论推广到捕食者非密度制约的情形,并且通过构造Lyapunov函数得到了系统的全局吸引性,最后利用数值模拟得到了当系统持久时周期模型的全局吸引性. In this paper , we investigate a non-autonomous predator-prey system witn stage structure in the prey and predator density-independent. Some sufficient conditions on the permanence and extinction of the species are established. Some weU-known results on the predator density-dependent are improved and extended to the predator density-independent case.The global attractivity of the model are obtained by constructing a Lyapunov function. Lastly, an example is given to show that the periodic model is global attractive if the system is permanent.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第18期126-140,共15页 Mathematics in Practice and Theory
基金 2011年新疆工业高等专科学校课题"捕食食饵模型的动力学研究"(2010xgz151112)
关键词 捕食食饵模型 捕食者非密度制约 非自治 阶段结构 持久性和灭绝性 predator-prey system density-independent non-autonomous stage structure per-manence and extinction
  • 相关文献

参考文献8

  • 1Cui J and Song X. Permanence of predator-prey system with stage structure [J]. Discrete and continuous dynamical system-series B, 2004, 3(4): 547-554.
  • 2Cui J and Takeuchi Y. A predator-prey system with a stage structure for prey [J]. Math Comput Modeling, 2006, 44: 1126-1132.
  • 3Cui J and Sun Y. Permanence of predator-prey system with infinite delay [J]. Electronic Journal of Differential Equations, 2004, 81: 1-12.
  • 4Teng Z and Chen L. Permanence and extinction of predator-prey systems in a patch environment with delay[J]. Nonlinear analysis, 2003, 4: 335-364.
  • 5Teng Z. Uniform persistence of the periodic predator-prey Lot ka-Volterra systems [J]. Appl Anal, 1999, 72: 339-352.
  • 6Smith H L. Cooperative system of differential equation with concave nonlinearities[J]. Nonl anal, 1986, 10: 1037-1052.
  • 7Zhao X O. The qualitative analysis of N-species Lotka-Volterra periodic competition systems [J]. Math Computer Modeling, 1991, 15: 3-8.
  • 8Cui J, Chen L and Wang W. The effect of disperal on population growth with stage structure [J]. Comput Math Appl, 2000, 39: 91-102.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部