期刊文献+

边界条件含特征参数的奇异不连续Sturm-Liouville算子的渐近特征

Asymptotic Behaviors of a Second Order Singular Discontinuous Differential Operator with Eigenparameter Dependent Boundary Conditions
原文传递
导出
摘要 研究有限区间内一类边界条件含特征参数的不连续奇异Sturm-Liouville问题.利用函数论和算子理论的方法,证明该问题的自伴性,得到其特征值的相关性质,基本解及其特征值的渐近公式. In this paper Strum-Liouville problem with eigenparameter dependent boundary conditions and with transmission conditions at finite points of considered finite interval is obtained. We prove that it's self-adjoint in a adequate Hilbert Space differential operator generated by this Singular Sturm-Liouville problem. Then some properties of the eigenvalues and asymptotic formulas for fundamental solutions and eigenvalues of the considered problem be investigated with function theory and operator method.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第18期242-251,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(10961019)
关键词 Sturm—Liouville问题 转移条件 渐近公式 strum-liouville problems transmission conditions asymptotic formulas
  • 相关文献

参考文献7

  • 1Mukhtarov O Sh. Discontinuous boundary-value problem with spectral parameter in boundary conditions [J]. Turkish Journal of Mathematics, 1994, 18: 183-192.
  • 2Tunc E, SH O. Muhtarov, Fundamental soluions and eiganvalues of one boundary-value problem with transmission conditions[J]. Applied Mathematics and Computation, 2004(157): 347-355.
  • 3O. SH. Muhtarov, Muhtarov F S. Eigenvalues and normalized eigenfunctions of discontinous strum- liouville problem with transmission conditions[J]. Reports on Mathematical Physics, 2004(54): 1-56.
  • 4YANG Qiuxia, WANG Wanyi. Asymptotic behavior of a differential operator with discontinuities a two points[J]. Mathematical Methods in the Applied Science, 2011, 34(4): 373-383.
  • 5王万义,孙炯.J-对称微分算子的J-对称扩张的J-辛几何刻画(英文)[J].数学进展,2003,32(4):481-484. 被引量:10
  • 6ZHOU Liguang, WANG Wanyi, SUO Jianqing. Spectrum of singular strum-liouville problem with eigenparameter dependent boundary conditions and transmission conditions[J], Journal of Inner Mongolia University, 2010, 41(6): 601-609.
  • 7Anton Zettl. Sturm-Liouville Theory[M]. Mathematical Surveys and Monographs, Vol.121, Ameri- can Mathematics Society, 2005.

二级参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部