期刊文献+

用分形理论研究低温条件下Al-Al界面间的接触导热现象 被引量:2

Using Fractal Theory to Study Heat Transfer between Al-Al Interfaces at Cryogenic Temperatures and Vacuum
下载PDF
导出
摘要 界面形貌是固体界面间接触导热的最主要影响因素 ,传统的形貌表征参数与仪器的分辨率和取样长度密切相关 ,因而基于这些参数的常规接触导热模型显然是尺度相关的。分形网络模型利用粗糙表面处处连续却不可微的分形特征 ,采用与尺度无关的分形参数 ,揭示了接触导热的本质 ,为准确预测接触热导开辟了一条新的途径。实验测定了粗糙表面的分形参数和低温条件下 Al50 52 - Al50 52界面间的接触热导 ,将接触热导的实验值与分形网络模型的预测结果进行了比较 ,并就接触热导与压力、分形参数和温度之间的关系进行了分析 ,指出分形网络模型的预测精度与分形参数相关联。 Micro-topography is the main factor influencing thermal contact conductance (TCC) between solid interface. Previous studies have shown that traditional roughness parameters are scale-dependent, so the TCC theoretical models based on these parameters are also scale-dependent. The fractal network model uses rough surface fractal parameters, which are irrelevant to instrumental resolution, and reveals the intrinsic properties of thermal contact. In this paper, the cryogenic TCC values have been measured across four pairs of Al5052-Al5052 specimens. The fractal network model has been used to predict TCC value as a function of contact pressure and surface fractal parameters. The measured and predicted values have been presented and compared. The relationship between TCC values and contact pressure, interface temperature, fractal parameters has been analyzed. And it is indicated that the prediction precision of network model is related to fractal parameters.
出处 《低温与超导》 CAS CSCD 北大核心 2000年第3期56-62,共7页 Cryogenics and Superconductivity
关键词 接触热导 网络模型 分形 铝材 界面形貌 低温 Fractal parameter, Thermal contact conductance, Network model
  • 相关文献

参考文献1

  • 1Majumdar A,J Heat Transfer,1991年,113期,516页

同被引文献20

  • 1徐烈,杨军,徐佳梅,周淑亮,胡江武,张存泉,唐应堂.低温下固体表面接触热阻的研究[J].低温与超导,1996,24(1):53-58. 被引量:25
  • 2[1]Zhang Jizhong(张济忠).Fractal(分形)[M].Beijing:Tsinghua University Press,1995.52~55
  • 3Xu Lihua(徐利华),Huang Yong(黄勇),Guo Hai(郭海),et al.固体材料的断裂力学行为中的分形特性研究之进展[J].Silicate Journal(硅酸盐学报),1997,25(4):458-465.
  • 4[4]Bogana M,Donadio G,Colombo L,et al.Simulation of Atomic Force Microscopy of Fractal Nanostructured Carbon Films[J].Europhysics Letters,2001,54,(1):72~76
  • 5[5]Xie Heping(谢和平),Zhang Yongpin(张永平),Song Xiaoqiu (宋晓秋),et al.Fractal Geometry-Math Base and Application (分形几何-数学基础与应用)[M].Chongqing:Chongqing University Press,1991.36~41
  • 6[6]Shen Buming(沈步明),Chang Ziwen(常子文).Fractal Dimension(分维数)[M].Beijing:Cataclysm Press,1989.43~46
  • 7[7]Pfeifer P,Avnir D.Chemistry in Noninteger Dimensions Between two and three:I Fractal Theory of Heterogeneous Surfaces[J].J Chem Phys,1983,79(7):3 558~3 561
  • 8[8]Farin D,Volpert A,Avni D.Importance of the Accuracy of Experimental Data in the Nonlinear Chromatographic Determination of Adsorption Energy Distribations[J].J Am Chem Soc,1985,107:3 368~3 372
  • 9[12]Lin Yihong(林溢鸿),Li Yingxue(李映雪).Fractal Theory (分形论)[M].Beijing:Beijing Institution of Technology,1992.123~125
  • 10[16]Shi Duanwen.Fractal Microstructure of Fracture Surfaces and Fracture Energy Metals[J].Journal of Material Science and Technology,1997,13 (6):495~498

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部