期刊文献+

椭圆曲面上不动点为二维实曲面的3阶循环群作用

Cyclic group action of order 3 on elliptic surface with 2-dimentional real surface as fixed point
下载PDF
导出
摘要 设Z3为椭圆曲面E(2k)(k=1,2)上的3阶循环群作用,群作用的不动点为二维实连通曲面Σ.利用Seiberg-Witten不变量的有关结论,研究该不动曲面Σ的亏格g与自交数[Σ]·[Σ]之间的关系,得出反映两者关系的不等式. Z3 is assumed as a cyclic group action of order 3 on elliptic surface E(2k) (k = 1,2), and the fixed point of the group action is a 2-dimensional real connected surface ∑. By using relevant conclusions about the Seiberg-Witten invariants, the relationship between the genus g and the self intersection number [ ∑] · [ ∑] of the fixed surface 2 is studied, and an inequality reflecting the relationship between the two is obtained.
作者 李红霞
出处 《上海海事大学学报》 北大核心 2012年第3期92-94,共3页 Journal of Shanghai Maritime University
基金 上海海事大学校基金(20110035)
关键词 椭圆曲面 亏格 相交数 Seiberg-Witten不变量 elliptic surface genus intersection number Seiberg-Witten invariant
  • 相关文献

参考文献11

  • 1KRONHEIMER P B, MROWKA T S. The genus of embedded surfaces in the projective plane[J]. Math Res Letters, 1994( 1 ) : 797-808.
  • 2MORGAN J W, SZABO Z, TAUBES C H. A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture[J]. J Differential Geom, 1996, 44: 706-788.
  • 3MORGAN J W, SZABO Z. Homotopy K3 surfaces and rood 2 Seiberg-Witten invariants[J]. Math Res Letters, 1997(4) : 17-21.
  • 4FURUTA M, KAMETANI Y, MINAMI N. Stable-homotopy Seiberg-Witten invariants for rational cohomology K3 's k3' s [ J ]. J Math Sci, 2001, 8(1): 157-176.
  • 5EDMONDS A. Construction of group actions on four-manifolds [ J]. Trans Amer Math Soc, 1987, 299 (1) : 155-170.
  • 6NAKAMURA N. Mod p vanishing theorem of Seiberg-Witten invariants for 4-manifolds with-actions [ J]. Asian J Math, 2006, 10 : 731-748.
  • 7KIM J H. Rigidity of periodic diffeomorphisms of homotopy K3 surfaces[ J]. Quart J Math, 2007, 59 (2) : 237-256.
  • 8ATIYAH M, BOTT R. A Lefschetz fixed point formula for elliptic complexes: II Applications[ J]. Ann Math, 1968, 88 (3) : 451-491.
  • 9ATIYAH M, SINGER I. The index of elliptic operators :III[ J]. Ann Math, 1968, 87 (3) : 546-604.
  • 10HIRZEBRUCH F. The signature theorem: reminiscenses and recreation[ R]. Ann Math Stud 70, Princeton Univ Pre, 1971 : 1-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部