期刊文献+

图像稀疏表示的结构自适应子空间匹配追踪算法研究 被引量:11

A Structure-Adaptive Matching Pursuit Subspace Search Algorithm for Effective Image Sparse Representation
下载PDF
导出
摘要 如何设计高效的图像稀疏表示模型及其分解算法是稀疏表示领域的研究热点.文中首先构建了图像的结构自适应多成分稀疏表示模型,该模型采用相对阈值标准对图像进行结构自适应的四叉树区域剖分,并将其分类为平滑、边缘和纹理结构的同性区域,构建与其结构形态相一致的多成分字典进行表示.进一步提出了一种结构自适应的子空间匹配追踪图像稀疏分解算法,将每一区域只在与其结构类型相一致的单一结构类型子成分字典中进行低维子空间搜索,降低了图像维数与字典搜索复杂度,提高了稀疏分解效率.实验结果验证了文中算法的有效性. It is hot research topics that how to design a proper image sparse representation model and a fast numerical algorithm for effective sparse decomposition of images. At first structure adaptive multi-component sparse representation model of image is constructed. This model adaptively segments an image into quad-tree block in terms of geometrical structure character and rela- tive threshold, and each homogenous block is classified as one of plain, edge or texture structure. At the same time, a multi-component dictionary is construed to represent each block. Furthermore, a structure adaptive matching pursuit subspace search algorithm is proposed to obtain effective image sparse representation. When seeking for sparse decomposition of every quad-tree block, it is only to search in subspace of single component sub-dictionary with the same structure type as current block. Due to the reduction of dimension of image and complexity of searching in the dictionary, our algorithm for sparse representation is effective and fast. The experimental results confirm the efficiency of our algorithm.
出处 《计算机学报》 EI CSCD 北大核心 2012年第8期1751-1758,共8页 Chinese Journal of Computers
基金 国家自然科学基金(61171165 61071146) 中国博士后基金(20110491429) 江苏省博士后基金(1101083C) 江苏省优势学科建设工程资助~~
关键词 稀疏表示 匹配追踪 多成分字典 四叉树分解 sparse representation matching pursuit multi-component dictionary quadtree decomposition
  • 相关文献

参考文献1

二级参考文献16

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

共引文献42

同被引文献135

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2C Y Tsai, K T Song. Heterogeneity-projection hard-decision color interpolation using speclral-spatial correlation [ J ]. IEEE Transactions on Image Processing, 2007,16( 1 ) : 78 - 91.
  • 3J F Hamilton, J Adams. Adaptive color plane interpolation in single sensor color electronic camera[ P]. U S :5629734,1997.
  • 4X Wu, N Zhtmg. Primary-consistent soft-decision color demo- saicking for digital cameras [J]. IEEE Transactions on Image Processing, 2004,13(9) : 1263 - 1274.
  • 5B Gunturk, Y Altunbasak, R Mersereau. Color plane interpola- tion using alternating projections[ J]. IEEE Transactions on Im- age Processing,2002,11(9):997- 1013.
  • 6Xin Li. Demosaicing by successive approximation [ J ]. IEEE Transactions on Image Processing, 2005,14(3) : 370 - 379.
  • 7L Zhang, X Wu. Color demosaicking via directional linear min- imum mean square-error estimation[ J]. IEEE Transactions on Image Processing, 2005,14(12) :2167 - 2178.
  • 8A Buades, et al. Self-similarity driven color demosaicking[ J ]. IEEE Transactions on Image Processing, 2009, 18 (6): 1192 - 1202.
  • 9L Zhang, X Wu, et al. Color demosaicking by local directional interpolation and non-local adaptive thresholding[ J]. Journal of Electronic Imaging,2011,20(2) :023016 - 16.
  • 10W Dong, et al. Image deblurring and super-resolution by adap- tive sparse domain selection and adaptive regularization [ J ]. IEEE Transactions on Image Processing, 2011,20 (7) : 1838 - 1857.

引证文献11

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部