期刊文献+

基于蚁群算法的多光谱遥感图像分类 被引量:3

Classification of Multispectral Remote Sensing Image Based on ACO
下载PDF
导出
摘要 该文应用蚁群算法和支持向量机实现多光谱遥感图像分类。首先提取出多光谱遥感图像的光谱特征、纹理特征和形状特征,然后利用蚁群优化算法从提取出的多维特征空间中选择最优的特征子集向量,最后将特征子集作为支持向量机分类器的输入量实现分类。实验结果显示,较传统的K均值方法文章给出的方法能够提高遥感图像的分类精度。 This paper uses a port vector machine (SVM) classification method based on ant to implement multispectral remote features, textural features and shape features are extracted from colony optimization(ACO) algorithm and sup- sensing image classification. Firstly, spectral the image, and then use ACO algorithm to se- lect subset multi-feature vector from the multi-dimensional feature space. Finally, use SVM classifier to classi- fy the multispectral remote sensing image based the subset features. The experimental results show that the method presented in this paper can obtain higher classification accuracy than K-means.
出处 《杭州电子科技大学学报(自然科学版)》 2012年第4期88-91,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 多光谱遥感图像 分类 光谱特征 形状特征 蚁群算法 支持向量机分类器 multispectral remote sensing image classification spectral feature texture feature shape fea-ture ACO algorithm SVM classifier
  • 相关文献

参考文献6

  • 1Wilkinson G G. Results and implications of a study of fifteen years of satellite image classification experiments[J]. Geosci Remote Sens, 2005,43(3) :433 - 440.
  • 2Tian Yanqin, Guo Ping, Lyu Michael R . Comparative Studies on Feature Extraction Methods for Multispectral Remote Sensing Image Classification [ C ]. Hawaii : Proceedings of IEEE International Conference on Systems, Man and Cybernet- ics, 2005 : 1 275 - 1 279.
  • 3Dorigo M, Stutzle T. Ant Colony Optimization [ M ]. Cambridge : MIT Press, 2004:5 - 13.
  • 4叶志伟,郑肇葆,万幼川,虞欣.基于蚁群优化的特征选择新方法[J].武汉大学学报(信息科学版),2007,32(12):1127-1130. 被引量:23
  • 5SongQing, Guo Ping, Jia Yunde. Ant colony optimization algorithm for remote sensing image classification using combined features [ C ]. Kunming: Proceedings of International Confemence on Machine Learning and Cybernetics, 2008:3 478 - 3 484.
  • 6Liu. Bo, AAbbass H, MeKay B. Classification Rule Discovery with Ant Colony Optimization [J]. Computational Intelli- gence, 2004,3 ( 1 ) :83 - 88.

二级参考文献5

共引文献22

同被引文献58

引证文献3

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部