期刊文献+

基于蚁群优化的无线自组织网络能量感知路由协议与参数优化研究 被引量:3

ON ACO-BASED ENERGY-AWARE ROUTING PROTOCOL FOR MOBILE AD HOC NETWORKS AND ITS PARAMETERS OPTIMISATION
下载PDF
导出
摘要 蚁群优化ACO(Ant Colony Optimization)作为一种模拟进化算法,具有信息正反馈、分布式计算和多agent协同的特点,在求解复杂优化问题方面体现出许多优越性。提出基于ACO的无线自组织网络能量感知路由协议ABEAR(Ant-Based Energy-Aware Routing)。协议按需发送人工蚂蚁进行路由发现,根据信息素浓度、节点能量和链路使用情况综合选择下一跳节点来转发数据包,尽量避开信道使用频率较高的路径,还可根据节点通信活动情况将空闲节点转入睡眠状态来节省能量消耗。由于蚁群参数的取值对于ACO算法的性能有着非常重要的影响,因此在分析三个关键参数(信息素挥发系数ρ、信息素权重因子α、剩余能量和链路拥塞指标权重因子β)对ABEAR性能的影响基础上,在NS2平台上进行了仿真实验,对参数优化的效果进行了对比,并总结出了参数值设定的具体步骤。 Ant colony optimisation is a simulated evolutionary algorithm which is characterised with a positive feedback,distributed computation and multi-agent synergy.It shows many advantages in solving complicated optimisation problems.This paper puts forward an ACO-based energy-aware routing protocol(ABEAR) for mobile Ad Hoc networks.ABEAR sends out artificial ants to find paths to the destination node reactively,selects comprehensively the next hop to forward data packets based on the pheromone density,the nodes energy and the link usage situation.ABEAR tries hard to make channel avoid the paths highly occupied and can make idle node turn to sleeping state to conserve energy according to the communication situation of nodes.The selection on parameters of the ACO algorithm plays an important role for the performance of the algorithm,therefore,in this paper,the influence of three key parameters,the pheromone evaporating factor ρ,the weight of pheromone α and the weight of the remaining energy link congestion metric β upon ABEAR are analysed,and the simulation experiments on NS2 platform are carried out.Comparison has been made between the effects of parameters optimisation,and specific parameters setting is summarised as well.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第9期66-70,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60871098) 重庆市自然科学基金重点项目(CSTC 2011BA2015)
关键词 移动AD HOC网络 蚁群算法 能量感知路由 参数优化 Mobile Ad hoc network, Ant colony optimisation, Energy-aware routing ,Parameter optimisation
  • 相关文献

参考文献7

  • 1Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colo- ny of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996,26( 1 ) :29 -41.
  • 2Dorigo M, Gambardella L M. Ant colony system: a cooperative learn- ing approach to the traveling salesman problem [ J ]. IEEE Transactions on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 3Lange D B, Oshima M. Seven good reasons for mobile agents [ J ]. Communications of the ACM, 1999, 42 ( 3 ) : 88 - 89.
  • 4Karbaschi G, Fladenmuller A. A link-quality and congestion-aware cross layer metric for multi-hop wireless routing[ C ]//Proceedings of second IEEE International Conference on Mobile Ad-hoc and Sensor Systems : IEEE, 2005:324 - 328.
  • 5吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 6Issariyakul T, Hossain E. Introduction to Network Simulator NS2 [ M ] : Springer Verlag, 2008.
  • 7Fall K, Varadhan K. The ns Manual (formerly ns Notes and Documen- tation) [ R]. 2010.

二级参考文献8

  • 1Dorigo M,Maniczzo V,Colomi A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man and Cybernetics Part B,1996,26(1):29 -41.
  • 2Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Trans.on Evolutionary Computation,1997,1(1):53 -66.
  • 3Dorigo M,Gambardella L M,Midderdorf M,et al.Guest editorial:Special section on ant colony optimization[J].IEEE Trans.On Evolutionary computation,2002,6 (4):317 -319.
  • 4Dorigo M,Gambardella L M.Solving symmetric and asymmetric TSPs by ant colonies[A].Proceeding of the IEEE conference on Evolutionary Computation(ICEC96)][C].Piscataway,NJ,USA:IEEE Press,1996.622-627.
  • 5Vittorio Manizzo,Antonella carbonaro.Ant colony optimization:an overview[J].Knowledge and Data Engineering,1999,11(5):769-778.
  • 6温文波,杜维.蚁群算法概述[J].石油化工自动化,2002,38(1):19-22. 被引量:55
  • 7李军.非对称距离的旅行商问题的构造算法[J].运筹与管理,2000,9(1):1-6. 被引量:9
  • 8陈崚,沈洁,秦玲.蚁群算法进行连续参数优化的新途径[J].系统工程理论与实践,2003,23(3):48-53. 被引量:37

共引文献46

同被引文献34

  • 1林亚平,王雷,陈宇,张锦,陈治平,童调生.传感器网络中一种分布式数据汇聚层次路由算法[J].电子学报,2004,32(11):1801-1805. 被引量:46
  • 2唐勇,周明天,张欣.无线传感器网络路由协议研究进展[J].软件学报,2006,17(3):410-421. 被引量:201
  • 3沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600.
  • 4SRINIVASAN P, KAMALAKKANNAN P. RSEA-AODV: route stabi- lity and energy aware muting for mobile Ad networks[ J]. Internatio- nal Journal of Computers Communications & Control,2013,8 (6) :891-900.
  • 5PERKINS C, ROYER E B, DAS S. Ad hoe on-demand distance vector (AODV) muting [ EB/OL]. [2010-08-10]. http: //www. fie-edi- tor. org/fie/rfe3561, txt.
  • 6JOHNSON D, HU Y, MALTZ D. The dynamic source routing protocol (DSR) for mobile Ad hoe networks for IPv4 [ EB/OL ]. [ 2010-08- 10]. http: //www. fie-editor, org/fie/rfc4728, txt.
  • 7YADAV V, SINGH D. DSR and DSDV routing protocol analysis using NS2 and association rule mining technique [ C ]//Proc of International Conference on Internet Computing and Information Communications. 2012:391-403.
  • 8KAUR D, KUMAR N. Comparative analysis of AODV, OLSR, TO- ILk, DSR and DSDV muting protocols in mobile Ad hoe networks [ J]. International Journal of Computer Network and Information Security ,2013,5(3 ) :39-46.
  • 9ZHANG Xin-ming,WANG En-bo, XIA Jing-jing, et al. An estimated distance based routing protocol for mobile Ad hoc networks[ J ]. I EEE Trans on Vehicular Technology,2011,60 (7) :3473-3484.
  • 10The network simulator NS- 2 [ EB/OL ]. [ 2012-12-04 ]. http: // nsnam, isi. edu/nsnam/index, php.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部