期刊文献+

基于兴趣点的人脸识别流形算法

MANIFOLD ALGORITHM OF FACE RECOGNITION BASED ON INTEREST POINTS
下载PDF
导出
摘要 在人脸识别应用领域中,已有的流形算法都是直接使用像素间的内部结构进行识别,而没有考虑像素点在人脸图像中所起的作用大小。为了克服上述缺点,基于概率密度的兴趣点检测,首先对图像进行加权计算,经过加权后的图像的目标特征更加明显,不易受视角和形状变化的影响;然后使用流行算法进行识别。在标准人脸库上的实验结果表明,该方法达到了较高的识别率,能提高流形算法的识别效果。 In face recognition applications,existing manifold algorithms are all use directly the internal structure between pixels to recognise but not consider the roles played by the pixels themselves in face image.To get over this deficiency,first,we carry out the weighted computation on the image based on interested points of probability density,the weighted image has more distinct target characteristics and is less sensible to the variations of visual angle and shape;then we use the manifold method to recognise the face.Experiments on standard face databases show that the proposed algorithm achieves quite high recognition rate and is able to improve the recognition effect of the manifold method.
作者 朱杰
出处 《计算机应用与软件》 CSCD 北大核心 2012年第9期77-80,共4页 Computer Applications and Software
基金 国家自然科学基金项目(90820306)
关键词 兴趣点 概率密度 流形学习 人脸识别 Interest point ,Probability density, Manifold learning, Face recognition
  • 相关文献

参考文献13

  • 1Yang Jian, Zhang D. Globally maximizing,locally minimizing : Unsuper- vised discriminant projection with applications to face and palm biomet- rics[J]. IEEE Transactions on Pattern Analysis and Machine Intell, 2007,29 ( 4 ) :650 - 664.
  • 2Schmid C,Mohr R,Bauckhage C. Evaluation of interest point detectors [J]. International Journal of Computer Vision, 2000, 37 ( 2 ) : 151 - 172.
  • 3Ni Fei, Fu Zhuang, Cao Qixin, eta|. Image processing method for eyes location based on segmentation texture [ J ]. Sensors and Actuators A, 2008,143:439 -451.
  • 4Law M H C ,Jain A K. Incremental Nonlinear Dimensionality Reduction by Manifold Learning [ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence,2006,28 ( 3 ) :377 - 391.
  • 5Choi Waipak, Lam Kinmau, Siu Wanchi. Extraction of the Euclidean Skeleton Based on a Connectivity Criterion [ J ]. Pattern Recognition, 2003,36(3) :721 -729.
  • 6孙达,唐降龙,刘家锋,黄剑华.基于概率密度的兴趣点检测算法[J].自动化学报,2008,34(8):854-860. 被引量:8
  • 7Roweis S,Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500) :2323 -2326.
  • 8Lee J A, Lendasse A, Verleysen M. Nonlinear projection with curviline- ar distances : ISOMAP versus curvilinear distance analysis [ J ]. Neuro- computing ,2004,57 ( 1 ) :49 - 76.
  • 9Yang J, Zhang D, Yang J Y, et al. Globally Maximizing, Locally Minimi- zing: Unsupervised Discriminate Projection with Applications to Face and Palm Biometrics [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007,29 ( 4 ) :650 - 664.
  • 10Coleman S A,Kerr D,Scotney B W. Concurrent Edge and Comer De- tection [ J ]. IEEE ICIP, San Antonio, USA,2007:273 - 276.

二级参考文献15

  • 1Harris C, Stephens M. A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference. Manchester, UK: University of Manchester, 1988. 147-151
  • 2Moravec H P. Towards automatic visual obstacle avoidance. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence. Cambridge, USA: MIT Press, 1977. 584
  • 3Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors. International. Journal of Computer Vision, 2004, 60(1): 63-86
  • 4Lindeberg T. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2): 79-116
  • 5Lindeberg T, Garding J. Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image and Vision Computing, 1997, 15(6): 415-434
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
  • 7Beaudet P R. Rotationally invariant image operators. In: Proceedings of the 4th International Joint Conference on Pattern Recognition. Tokyo, Japan: IEEE, 1978. 579-583
  • 8Kitchen L, Rosenfeld A. Gray-level corner detection. Pattern Recognition Letters, 1982, 1(2): 95-102
  • 9Dreschler L, Nagel H H. Volumetric model and 3D trajectory of a moving car derived from monocular TV frame sequences of a street scene. Computer Graphics and Image Processing, 1982, 20(3): 199-228
  • 10Haralick R M, Shapiro L G. Computer and Robot Vision Ⅱ. Boston: Addison-Wesley, 1993

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部