期刊文献+

搜索引擎日志中“N+V+N”和“V+N+N”型短语功能类别识别

THE "N+V+N" AND "V+N+N" STRUCTURE PHRASE FUNCTION RECOGNITION IN SEARCH ENGINE QUERY LOGS
下载PDF
导出
摘要 采用支持向量机(SVM)方法实现搜索引擎日志中"N+V+N"、"V+N+N"型短语功能类别识别。通过选取不同特征,构建多特征模板,实现对"N+V+N"、"V+N+N"型短语中名词短语、动词短语、主谓短语三种功能短语的自动识别,并且针对不同词性标注集对实验结果是否有影响进行了实验。实验结果显示,SVM在搜索引擎日志短语识别中有很高的识别率。 This paper proposes to use Support Vector Machine(SVM) model to recognize the function category of "N+V+N" and "V+N+N" structure phrase in search engine logs.By selecting different features,constructs the multi-feature templates to automatically recognize noun phrases,verb phrases and subject-predicate phrases three kinds of function phrases in the structure of "N+V+N" and "V+N+N" and has carried on the experiment to test the different part-of-speech tagging to experimental result's influence.The experimental result showed that SVM has the very high recognition rate in the search engine diary phrase recognition.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第9期112-116,125,共6页 Computer Applications and Software
基金 国家社会科学基金项目(09CYY021)
关键词 支持向量机 搜索引擎日志 “N+V+N” “V+N+N” 功能类别 Support vector machine, Search engine logs ,"N+V+N" ,"V+N+N" ,Function category
  • 相关文献

参考文献6

二级参考文献28

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部