摘要
采用支持向量机(SVM)方法实现搜索引擎日志中"N+V+N"、"V+N+N"型短语功能类别识别。通过选取不同特征,构建多特征模板,实现对"N+V+N"、"V+N+N"型短语中名词短语、动词短语、主谓短语三种功能短语的自动识别,并且针对不同词性标注集对实验结果是否有影响进行了实验。实验结果显示,SVM在搜索引擎日志短语识别中有很高的识别率。
This paper proposes to use Support Vector Machine(SVM) model to recognize the function category of "N+V+N" and "V+N+N" structure phrase in search engine logs.By selecting different features,constructs the multi-feature templates to automatically recognize noun phrases,verb phrases and subject-predicate phrases three kinds of function phrases in the structure of "N+V+N" and "V+N+N" and has carried on the experiment to test the different part-of-speech tagging to experimental result's influence.The experimental result showed that SVM has the very high recognition rate in the search engine diary phrase recognition.
出处
《计算机应用与软件》
CSCD
北大核心
2012年第9期112-116,125,共6页
Computer Applications and Software
基金
国家社会科学基金项目(09CYY021)