期刊文献+

基于MPF的惯性导航系统快速对准技术

A fast alignment method for inertial navigation system based on MPF
下载PDF
导出
摘要 针对目前应用于惯性导航系统初始对准中的扩展卡尔曼滤波存在对准精度低、时间长的缺点,提出一种基于模型预测滤波的快速对准技术。该方法将惯性器件测量误差视为模型误差使用MPF进行实时预测,并以此来修正惯性导航系统的平台误差角。这样,MPF不仅有效提高了平台误差角的估计精度,而且降低了系统状态变量的维数,大大缩短了初始对准时间。仿真结果表明,MPF在平台对准精度和快速性方面均明显优于EKF,初时对准时间仅是EKF的10%,而对准精度却高于EKF。 A fast alignment method based on model predictive filter (MPF) is put forward to solve the problems of low accuracy and long time, consisting in extended Kalman filter (EKF) applied to initial alignment of inertial navigation system (INS). In this method, the measurement error resulted from the inertial unit is considered as the model error to be predicted in time through MPF, then it is fed back to INS to correct the platform angles error. Consequently, MPF not only improves the estimation precision of the platform angle, but also decreases the state dimension of INS, further shorten the initial alignment time. The simulation results show that MPF is superior to EKF in precision and rapidity of the platform alignment, and especially MPF needs less alignment time than EKF, only 10% of EKF, while the alignment precision is better than EKF.
出处 《信息技术》 2012年第9期23-27,32,共6页 Information Technology
基金 国家自然科学基金(60974104)
关键词 惯性导航系统 模型预测滤波 扩展卡尔曼滤波 对准精度 快速性 inertial navigation system model predictive filter extended Kalman filter alignmentprecision rapidity
  • 相关文献

参考文献7

  • 1Julier S J, Uhlmann J" K. A new approach for filtering nonlinear sys- tem[ C]. Proceedings of the 1995 American Control Conference, Washington, USA, Jun. 23-25, 1995.
  • 2Julier S J, Uhlmann J K. A general method for approximating non- linear transformation of probability distributions [ EB/OL ]. (1996). http://www, eng. ox. ae. uk/.
  • 3张卫明,张继惟,范子杰,钟山.UKF方法在惯性导航系统初始对准中的应用研究[J].系统工程与电子技术,2007,29(4):589-592. 被引量:17
  • 4Crassidis 3 L, Markley F L. Predictive filtering for nonlinear systems [J]. Journal of Guidance, Control, and Dynamics. 1997, 20(3) : 566 - 572.
  • 5Titterton D H, Weston J L. Stmpdown inertial navigation technology [M]. New York: AIAA Press, 1997.
  • 6Farrel J A, Barth M. The global position system & inertial naviga-tion[ M]. New York: McGraw - Hill Professional, 1999.
  • 7王惠男.GPS导航原理与应用[M].北京:科学出版社,2003.

二级参考文献6

  • 1Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for filtering nonlinear systems[C]∥Washington:Proceedings of the American Control Conference Seattle,1995,6:1628-1632.
  • 2Julier S J,Uhlmann J K.Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations[C]∥Proceedings of the American Control Conference Anchorage,Alaska,2002,5,8~10:887-892.
  • 3Merwe R,Doucet A,Freitas N,et al.The unscented particle filter[C]∥Adv.Neural Inform Process System,2000,12:548-590.
  • 4Sorenson H W.Kalman filtering:theory and applications[M].New York:IEEE Press,1985:23-25.
  • 5Wan R,van der Merwe R.The unscented Kalman filter for nonlinear estimation[C]∥in IEEE Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing,Communication and Control.Lake Louise,Alberta,Canada.2000:153-158.
  • 6van der Merwe R,Wan E A.The square-root unscented Kalman filter for state and parameter-estimation[C]∥In Proceeding of the International Conference on Acoustics,Speech,and SignalProcessing 2001,Salt Lake City,Utah,2001,5:3461-3464.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部