期刊文献+

基于SVD的双线性非负矩阵集分解

Decomposition based on SVD bilinear non-negative matrix set
下载PDF
导出
摘要 非负矩阵分解(non-negative matrix factorization,NMF)是一种常用的非负多元数据描述方法。处理数据矩阵集时,NMF描述力不强、推广性差。基于双线性型的非负矩阵集分解(bilinear form-based non-negative matrix set factorization,BFBNMSF)是对NMF的扩展,处理数据矩阵集时,BFBNMSF比NMF描述力强、推广性好。但BFBNMSF在初始化时使用随机分布,为使BFBNMSF更快收敛,该文提出一种基于奇异值分解(Singular value decomposition,SVD)初始化的BFBNMSF,即SVD-BFBNMSF,对系数矩阵进行初始化,已达到快速收敛的目的。实验结果表明:与传统BFBNMSF比较,该方法在收敛速度确有所改善。 The non-negative matrix factorization is a commonly used non-negative multivariate data description. Processing the data matrix set of NMF description is not strong, and poor promotion. Based on the bilinear form a non-negative matrix set decomposition is the extension of NMF, process the data matrix set, BFBNMSF compares with the NMF,it describes strong, has good promotion. But BFBNMSF randomly distributed at initialization time, to make BFBNMSF faster convergence, this paper proposed based on singular value decomposition to initialize the BFBNMSF, namely the SVD-BFBNMSF, the coefficient matrix of the early initialization has reached the goal of fast convergence. The experimental results show that compared with the traditional BFBNMSF the convergence speed is indeed improved.
出处 《信息技术》 2012年第9期140-142,146,共4页 Information Technology
关键词 非负矩阵集分解 双线性型 SVD 图像描述 特征提取 NMSF bilinear forms SVD image representation feature extraction
  • 相关文献

参考文献5

二级参考文献51

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3Lee D D and Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791.
  • 4Wachsmuth E, Oram M W, and Perrett D I. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb. Corte., 1994, 4(5): 509-522.
  • 5Biederman I. Recognition-by-components: Atheory of human image understanding. Psychol. Rev. 1987, 94(2): 115-147.
  • 6Palmer S E. Hierarchical structure in perceptual representation. Cogn. Psychol., 1977, 9(3): 441-474.
  • 7Field D J. What is the goal of sensory coding? Neural Computation, 1994, 6(4): 559-601.
  • 8Hoyer P O. Non-negative matrix factorization with sparseness constraints. J. of Mach. Learning Res., 2004, 5(9): 1457-1469.
  • 9Heiler M and Schnorr C. Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Program-ruing. J. of Mach. Learning Res., 2005, 7(7): 1385-1407.
  • 10Lee D D and Seung H S. Algorithms for non-negative matrix factorization. In Adv. in Neur. Inform. Proc. Syst. (NIPS), Cambridge: MIT Press, 2000: 556-562.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部