摘要
设f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz^n)from n=1 to +∞为定义在单位圆盘U上的调和映照,满足条件sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|,证明当0<p≤1时,f(z)在圆盘|z|<r0=1/(21-p)内单叶;当1<p≤2时,(z)在圆盘|z|<R=1/(22-p)内为凸像函数.所得结果推广了M.Jahangiri等和M.ztürk等的结论.
Let f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz^n)from n=1 to +∞ be a harmonic mapping of the unit disk U,satisfying sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|.In this paper we prove that: if 0〈p≤1,then f(z) is univalent in the disk |z|〈r0=1 21-p;if 1〈p≤2,then f(z) is convex in the disk |z|〈R0=1 22-p.These improve the corresponding results made by M.Jahangiri and M.ztürk.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2012年第5期581-583,共3页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(11101165)
国务院侨办科研基金资助项目(10QZR22)
关键词
调和映照
单叶半径
星像函数
凸像函数
harmonic mapping
univalent radius
starlike mapping
convexity mapping