期刊文献+

单位圆上调和映照的单叶半径

Univalent Radius of Harmonic Mapping in the Unit Disk
下载PDF
导出
摘要 设f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz^n)from n=1 to +∞为定义在单位圆盘U上的调和映照,满足条件sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|,证明当0<p≤1时,f(z)在圆盘|z|<r0=1/(21-p)内单叶;当1<p≤2时,(z)在圆盘|z|<R=1/(22-p)内为凸像函数.所得结果推广了M.Jahangiri等和M.ztürk等的结论. Let f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz^n)from n=1 to +∞ be a harmonic mapping of the unit disk U,satisfying sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|.In this paper we prove that: if 0〈p≤1,then f(z) is univalent in the disk |z|〈r0=1 21-p;if 1〈p≤2,then f(z) is convex in the disk |z|〈R0=1 22-p.These improve the corresponding results made by M.Jahangiri and M.ztürk.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第5期581-583,共3页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11101165) 国务院侨办科研基金资助项目(10QZR22)
关键词 调和映照 单叶半径 星像函数 凸像函数 harmonic mapping univalent radius starlike mapping convexity mapping
  • 相关文献

参考文献6

  • 1LEWY H. On the non-vanishing of the Jocobian in certain one-to-one mappings[J]. Bull Am Math Soc, 1936,42(10):689-692.
  • 2AHUJA P. Planar harmonic univalent and related mappings[J]. Journal of Inequalitities in Pure and Applied Mathe-matics, 2005,6(4) :1-18.
  • 3JAHANGIRI M, SILVERMAN H. Harmonic close - to - convex mappings[J]. Journal of Applied Mathematics andStochastic Analysis?2002*15(1) :23-28.
  • 4JAHANGIRI M* SILVERMAN H. Meromorphic univalent harmonic functions with negative coefficients[J]. BullKorean Math Soc, 1999,36(4) :763-770.
  • 5OZTURK M, YALCIN S. On univalent harmonic functions [J]. Journal of Inequalities in Pure and Applies Mathe-matics 12002,3( 4) :l-8.
  • 6WIDOMAKI J, GREGORCZYK M Harmonic mappings in the exterior of the unit disk[J]. Annales UMCS, Math-ematica,2010,64( 1) : 63-73.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部