期刊文献+

几类高阶非齐次微分方程解的增长性

Growth of Solutions of Several Classes of Higher Order Non-homogeneous Differential Equations
下载PDF
导出
摘要 研究了一类高阶非齐次微分方程f(k)+Ak-1(z)f(k-1)++A0(z)f=Q(z),其中Aj(z)为有限级整函数,Q(z)为次数小于n的多项式,和另一类高阶非齐次微分方程f(k)+hk-1(z)eak-1zf(k-1)++h1(z)ea1zf′+(A1)(z)ebz+A2(z)edz f=Q(z),其中hj(z),Ai(z)为级小于1的整函数,Q(z)为次数小于n的多项式,在一定条件下,得到了方程解的级的精确估计。 In the paper, the authors investigate one class of higher order non-homogeneous differential equations f(k) +Ak-1(Z)f^(k-1) +……+Ao(z)f= Q(z) , where Aj(z) are entire functions of finite order, Q(z) are polynomi- als with degQ〈n , and another class of higher order non-homogeneous differential equationsf^(k)+hk-1(z)e^ah-1^zf^(k-1)+……+h1(z)e^a1zf'+(A1(z)e^bz+A2(z)e^dx)f=Q(z) , where hj(z) , Ai(z) are entire func- tions, α(hj)〈 1 and α(Ai) 〈 1, Q(z) are polynomials with deg Q 〈n. Under certain conditions, the authors ob- tain some precise estimates of the order of solutions for those equations.
出处 《华东交通大学学报》 2012年第4期46-51,共6页 Journal of East China Jiaotong University
关键词 微分方程 整函数 differential equation entire function order
  • 相关文献

参考文献5

二级参考文献32

  • 1曹廷彬,陈宗煊.关于迭代级亚纯函数的Borel例外值、充满圆及Borel方向[J].江西师范大学学报(自然科学版),2005,29(1):4-7. 被引量:7
  • 2徐俊峰,陈聚峰.亚纯函数的无穷级Borel方向[J].海南大学学报(自然科学版),2006,24(4):328-330. 被引量:3
  • 3仪洪勋 杨重骏.亚纯函数惟一性理论[M].北京:科学出版社,1995..
  • 4[2]CHEN Zong-xuan,YANG Chung-chun.Some further results on the zeros and growths of entire solutions of second order linear differential equations[J].Kodai Math J,1999,22:273-285.
  • 5[3]GUNDERSEN G.Estimates for logarithmic derivative of a meromorphic function,plus similar estimates[J].J London Math Soc,1988,37(2):88-104.
  • 6[4]HAYMAN W.Meromorphic functions[M].Clarendon Press,Oxford,1964.
  • 7[6]KWON Ki-ho,Nonexistence of finite order solutions of certain second order linear differential equations[J].Kodai Math J,1996,19:378-387.
  • 8[7]MARKUSHEVICH A I.Theory of functions of a complex variable[M].New Jersey:Prentice-Hall,1965.253-255.
  • 9高仕安 陈宗煊 等.线性微分方程的复振荡理论[M].武汉:华中理工大学出版社,1997..
  • 10Amemiya, I. & Ozawa, M., Non-existence of finite order solutions of w" + e-zw′ + Q(z)w = 0, Hokkaido Math. J., 10(1981), 1-17.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部