期刊文献+

不完备系统中的多粒度粗糙集及其对比分析

Multigranulation rough set models and their comparisons in incomplete systems
下载PDF
导出
摘要 多粒度方法是粗糙集理论中的一种新的数据处理模式.为了使得多粒度方法能够用于处理不完备信息系统,分别采用容差关系、相似关系和限制容差关系构建乐观和悲观多粒度粗糙集模型.不仅分析了这些多粒度粗糙集的基本性质,还对他们之间的关系进行了讨论,得出的结论是,基于限制容差关系的多粒度下近似介于基于容差关系和相似关系的多粒度下近似之间,基于限制容差关系的多粒度上近似介于基于容差关系和相似关系的多粒度下近似之间,这与单粒度框架下得到的结论一致. Muhigranulation approach is a new data analyzing model in rough set theory. To deal with the incomplete information system through the multigranulation approach, the tolerance relations, similarity relations and limited tolerance relations are employed to construct optimistic and pessimistic multigtanulation rough sets, respectively. Not only are the basic properties about these multigranulation rough sets analyzed, but also the relationships among them discussed. It is shown that by the muhigranulation approach, the limited tolerance relations based multigranulation lower approximations fall between the tolerance and the similarity relations based multigranulation lower approximations, the limited tolerance relations based muhigranulation upper approximations fall between the similarity and the tolerance relations based muhigranulation upper approximations. Such results are consistent with those in single-granulation based rough sets models.
出处 《江苏科技大学学报(自然科学版)》 CAS 2012年第4期381-387,共7页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61100116) 江苏省高校自然科学基金资助项目(11KJB520004) 中国博士后科学基金资助项目(20100481149) 江苏省博士后科学基金资助项目(1101137C)
关键词 不完备信息系统 容差关系 相似关系 限制容差关系 多粒度粗糙集 incomplete information system tolerance relation similarity relation limited tolerance relation muhigranulation rough set
  • 相关文献

参考文献12

  • 1Pawlak Z. Rough sets:theoretical aspects of reasoning a-bout data [ M ]. London: Kluwer Academic Publishers, 1991 : 1 - 225.
  • 2Pawlak Z, Skowron A. Rudiments of rough sets [ J ]. Information Sciences, 2007, 177 ( 1 ) : 3 - 27.
  • 3Pawlak Z, Skowron A. Rough sets : some extensions [ J ]. Information Sciences, 2007, 177( 1 ): 28-40.
  • 4Pawlak Z, Skowron A. Rough sets and boolean reasoning [J]. Information Sciences, 2007, 177 (1) : 41 -73.
  • 5Qian Y H, Liang J Y, Dang C Y. Incomplete multigranu- lation rough set [ J ]. IEEE Transactions on Systems, Man, and Cybernetics: Part A, Systems and Humans, 2010, 40(2) : 420 -431.
  • 6Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: A multi- granulation rough set [ J ]. Information Sciences, 2010, 180(6) : 949 -970.
  • 7QIAN Yuhua LIANG Jiye WEI Wei.Pessimistic Rough Decision[J].浙江海洋学院学报(自然科学版),2010,29(5):440-449. 被引量:5
  • 8华伟,祁云嵩,王芳.不完备目标信息系统中的可变精度粗糙集模型[J].江苏科技大学学报(自然科学版),2009,23(6):531-534. 被引量:5
  • 9Kryszkiewicz M. Rough set approach to incomplete informa- tion systems[ J]. Information Sciences, 1998, 112(1/4) : 39 --49.
  • 10Stefanowski J, Tsoukias A. Incomplete information ta- bles and rough classification[ J ]. Computational InteUi- gence, 2001, 17(3) : 545 -566.

二级参考文献19

  • 1杨习贝,吴陈,傅凡.不完备信息系统中属性增减下粗集近似概念的更新[J].江苏科技大学学报(自然科学版),2005,19(6):64-69. 被引量:2
  • 2Pawlak Z. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems, 1998, 29(7) :661 - 688.
  • 3Pawlak Z. Rough sets and intelligent data analysis [J]. Information Sciences, 2002, 147(1/4) : 1 - 12.
  • 4Grzymala-Busse J W. Data with missing attribute values: generalization of indiscernibility relation and rule induction[J]. Transactions on Rough Sets I, 2004, 3100:78 - 95.
  • 5Stefanowski J, Tsoukias A. Incomplete information tables and rough classification [ J ]. Computational Intelligence, 2001, 17 : 545 - 566.
  • 6Kryszkiewicz M. Rough set approach to incomplete information systems [J]. Information Sciences, 1998, 112 : 39 - 49.
  • 7Ziarko W. Variable precision rough set model[ J ]. Journal of Computer and System Sciences, 1993, 46 : 39 - 59.
  • 8Grzymala-Busse J W. Data with missing attribute values:generalization of indiscemibility relation and rule induction[ J ]. Transactions on Rough Sets I, Lecture Notes in Computer Science, 2004, 3100 : 78 - 95.
  • 9Li Tianrui, Da Ruan, Geert Wets, et al. A rough sets based characteristic relation approach for dynamic attrib- ute generalization in data mining [ J ]. Knowledge-Based Systems, 2007, 20 (5) : 485 - 494.
  • 10Greco S, Matarazzo B, SlowiAski R. Rough sets theory for multicriteria decision analysis [ J ]. European Journal of Operational Research, 2001, 129( 1 ) : 1 -47.

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部