期刊文献+

关于拟WGP-内射模

On Quasi WGP-injective Mdules
下载PDF
导出
摘要 定义了拟WGP-内射模,给出了拟WGP-内射模的一些刻画及性质。设R为环,M是右R-模,S=End(M),证明了MR是一个右拟WGP-内射模当且仅当对于任意的0≠a∈S,存在0≠c∈S,使得ac≠0且lS(ker(ac))=Sac;设M是右拟WGP-内射的自生成子,S半素,则S的每个极大核是M的直和项;设MR是右拟WGP-内射模,对于S的任意右一致元u,Au={s∈S|kers∩u(M)≠0}是包含ls(u(M))的一个极大左理想,从而推广了WGP-内射环的一些结果。 Abstract: Quasi WGP - injective modules are defined. Then some characterizations and properties are given. Let R be a ring, M right R - module, S = End( MR ) . It is shown that M is a right quasi WGP - injective module if and only if for and 0≠a ∈ S, there exists 0 ≠ c∈ S such that 1s ( ker(ac) ) = Sac. Moreover, it is proved that if M is a right quasi WGP - injective self - genera- tor and S is a semiprime ring, then every maximal kernel of S is a summand of M ; If M is a right quasi WGP - injeetive module, then for any right uniform dement of S, the set Au = { s ∈ S I kers ∩ u (M)≠ 0 } is a maximal left ideal of S containing ls ( u (M)). Consequently, some results of WGP- injective rings are generalized.
作者 陈平 宋贤梅
出处 《安庆师范学院学报(自然科学版)》 2012年第3期18-20,27,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省教育厅自然科学研究重点项目(KJ2010A126) 安徽师范大学专项基金(2008xzx10)资助
关键词 拟WGP-内射模 WGP-内射环 自生成子 WGP - injeetive module, WGP - injective ring, self - generator
  • 相关文献

参考文献11

  • 1Nicholson W K,Yousif M F.Principally injective rings[J].J.Algebra,1995,174:77-93.
  • 2Sanh N V,Shum P K,Dhomongsa S.On quasi-principally injective modules[J].Algebra Colloquium,1999,6(3):269-276.
  • 3Sanh N V,Shum K P.Endmorphism rings of quasi-principally injective modules[J].Comm.in Algebra,2001,29(4):1 437-1 443.
  • 4赵玉娥,杜先能.关于拟GP-内射模(英文)[J].大学数学,2005,21(3):38-41. 被引量:9
  • 5Zhao Yu-e,Du Xianneng.On quasi GP-injective modules[J].Journal of Anhui University(Natural Science),2007,31(4):13-16.
  • 6Wisbauer R.Foundations of module and ring theory[M].Tokyo:Gordon and Breach,1991.
  • 7Goodearl K R.Von Neumann regular rings[M].Florida:Krieger Publishing Company,1991.
  • 8Goodearl K R.Ring theory-nonsingular rings and modules[M].New York and Basel:Marcel Dekker INC,1976.
  • 9Chan Huh,Hong Kee Kim,Yang Lee.P.P.rings and generalized P.P.rings[J].Journal of Pure and Applied Algebra,2002,167:37-52.
  • 10Liang Li.On a Generalization of GP-injective Rings[J].Journal of Sichuan University(Natural Science),2006,43(4):726-729.

二级参考文献5

  • 1Nam S B, Kim N K and Kim J Y. On Simple GP-injective Module[J]. Comm.in.Algebra, 1995,23(14):5437-5444.
  • 2Sanh N V, Shum K P, Dhompongsa S, Wongwai S. On Quasi-principally Injective Modules[J]. Algebra Colloquium,1999,6(3):269-276.
  • 3Sanh N V and Shum K P. Endomorphism Rings of Quasi-principally Injective Modules[J]. Comm. in Algebra,2001,29(4):1437-1443.
  • 4Chen Jianlong and Ding Nanqing. On General Principally Injective Rings[J]. Comm. in Algebra, 1999,27(5):2097-2116.
  • 5Nicholson W K, Park J K and Yousif M F. Principally Injective Rings[J]. Journal of Algebra, 1995, 174:77-93.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部