期刊文献+

平板收缩流的对数构象模拟 被引量:1

Numerical Simulation of Planar Contraction Flow Using Log-conformation Tensor Approach
下载PDF
导出
摘要 本文采用对数构象方法,结合同位网格有限体积离散,对由Oldroyd-B本构模型描述的粘弹性流体流动的高We数问题(High Weissenberg Number Problem,HWNP)进行了研究,对等温不可压条件下的平面Poiseuille流和4:1平板收缩流进行了数值模拟.平面Poiseuille流在不同We数时的数值结果验证了对数构象方法在简单流动中的有效性.在4:1粘弹性收缩流的数值模拟中,对数构象方法和传统方法在低We数时流场中的流线、应力等的对比结果验证了对数构象方法在复杂流动中的有效性.高We数时的数值结果表明:对于Oldroyd-B模型,对数构象方法可提高求解时的稳定性,并可将临界We数由传统方法的2.5提高到5.0. In this paper, a log-conformation tensor finite volume method, which couples the log- conformation tensor approach with the finite volume discretization on non-staggered grids, is proposed to solve the high Weissenberg number problem (HWNP) in viscoelastic flows. The planar Poiseuille flow for Oldroyd-B model is simulated to verify the validity of the method for simple flow. The efficiency and reliability of the log-conformation tensor finite volume method for solving complex flow are shown through the perfect agreement with traditional approach for the simulation of 4:1 planar contraction flow at lower Weissenberg number. The successful simulation at higher critical Weissenberg number 5.0, compared to that of 2.5 in traditional method, indicates that the numerical instability at high Weissenberg number can be overcome by the log-conformation tensor finite volume method.
出处 《工程数学学报》 CSCD 北大核心 2012年第5期703-714,共12页 Chinese Journal of Engineering Mathematics
基金 国家重点基础研究发展计划(2012CB025903)~~
关键词 对数构象 粘弹流体 HWNP 有限体积法 平板收缩流 log-conformation viscoelastic fluid HWNP finite-volume method planar contraction
  • 相关文献

参考文献18

  • 1古大治.高分子流体动力学[M].成都:四川教育出版社,1988年..
  • 2赵得禄,李险峰.聚合物复杂流体流动的动力学模拟[J].高分子通报,1999(3):75-82. 被引量:4
  • 3Tureker C L. Fundamentals of Computer Modelling for Polymer Processing[M]. Munich: Hanser Publishers, 1989.
  • 4Owens R G, Phillips T N. Computational Rheology[M]. London: Imperial College Press, 2002.
  • 5Fattal R, Kupferman R. Constitutive laws for the matrix-logarithm of the conformation tensor[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2-3): 281-285.
  • 6Hulsen M A, Fattal R, Kupferman R. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 127(1): 27-39.
  • 7Gunette R, eta/. An adaptive remeshing strategy for viscoelastic fluid flow simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 153(1): 34-45.
  • 8Pan T W, Hao J. Numerical simulation of a lid-driven cavity viscoelastic flow at high Weissenberg num- bers[J]. Comptes Rendus Mathematique, 2007, 344(4): 283-286.
  • 9Fattal R, Kupferman R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(1): 23-37.
  • 10Xue S C, Phan-Thien N, Tanner R I. Three dimensional numerical simulations of viscoelastic flows through planar contractions[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 74(1-3): 195-245.

二级参考文献7

  • 1Yuan X F,Colloids Surfaces A,1998年,144卷,305页
  • 2Espanol,J Non Newtonian Fluid Mech,1996年,65卷,93页
  • 3Spenley N A,J Phys II France,1996年,6卷,551页
  • 4Yuan X F,J Non Newtonian Fluid Mech,1995年,60卷,335页
  • 5Yuan X F,J Chem Phys,1994年,101卷,9016页
  • 6Yuan X F,J Non Newtonian Fluid Mech,1994年,54卷,423页
  • 7Yuan X F,J Non Newtonian Fluid Mech,1993年,46卷,331页

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部