摘要
广义Bethe树是指每层上的点都具有相同度的带根树.设Bk为具有k层的广义Bethe树,Kr为r阶完全图.把r个Bk的根点分别粘在Kr的r个点上,可获得一个图BkoKr.借助于k阶对称三对角矩阵,本文给出邻接矩阵A(BkoKr)和Laplace矩阵L(BkoKr)的特征值的简洁刻画.此外,本文还给出了A(BkoKr)的Perron向量的结构性质.
A generalized Bethe tree is a rooted tree for which the vertices in each level having equal degree. Let Вk be a generalized Bethe tree of k level, and let К^τ be a complete graph on r vertices. Then a graph В_κοК^τ is obtained from r copies ofВk and К^τ by appending r roots to the vertices of К^τ, respectively. In this paper, a simple way is introduced to characterize the eigenvalues of the adjacency matrix A(В_κοК^τ)and the Laplaeian matrix L(В_κοК^τ)of В_κοК^τ means of symmetric tridiagonal matrices of order k. In addition, the structure property of the Perron vectors of A(В_κοК^τ)is given.
出处
《工程数学学报》
CSCD
北大核心
2012年第5期763-772,共10页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(11071002)
the Program for NewCentury Excellent Talents in University,Key Project of Chinese Ministry of Education(210091)
the Specialized Research Fund for the Doctoral Program of Higher Education(20103401110002)
the Science andTechnological Fund of Anhui Province for Outstanding Youth(10040606Y33)
the Project of Anhui Prov-ince for Excellent Young Talents in Universities(2009SQRZ017ZD)
the Project of Educational Departmentof Anhui Province(KJ2010B136)
the Scientific Research Fund for Fostering Distinguished Young Scholars of Anhui University(KJJQ1001)
the Project for Academic Innovation Team of Anhui University(KJTD001B)