期刊文献+

由广义Bethe树和完全图所构造的图的谱(英文)

The Spectrum of a Graph Obtained from Copies of a Generalized Bethe Tree and a Complete Graph
下载PDF
导出
摘要 广义Bethe树是指每层上的点都具有相同度的带根树.设Bk为具有k层的广义Bethe树,Kr为r阶完全图.把r个Bk的根点分别粘在Kr的r个点上,可获得一个图BkoKr.借助于k阶对称三对角矩阵,本文给出邻接矩阵A(BkoKr)和Laplace矩阵L(BkoKr)的特征值的简洁刻画.此外,本文还给出了A(BkoKr)的Perron向量的结构性质. A generalized Bethe tree is a rooted tree for which the vertices in each level having equal degree. Let Вk be a generalized Bethe tree of k level, and let К^τ be a complete graph on r vertices. Then a graph В_κοК^τ is obtained from r copies ofВk and К^τ by appending r roots to the vertices of К^τ, respectively. In this paper, a simple way is introduced to characterize the eigenvalues of the adjacency matrix A(В_κοК^τ)and the Laplaeian matrix L(В_κοК^τ)of В_κοК^τ means of symmetric tridiagonal matrices of order k. In addition, the structure property of the Perron vectors of A(В_κοК^τ)is given.
出处 《工程数学学报》 CSCD 北大核心 2012年第5期763-772,共10页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11071002) the Program for NewCentury Excellent Talents in University,Key Project of Chinese Ministry of Education(210091) the Specialized Research Fund for the Doctoral Program of Higher Education(20103401110002) the Science andTechnological Fund of Anhui Province for Outstanding Youth(10040606Y33) the Project of Anhui Prov-ince for Excellent Young Talents in Universities(2009SQRZ017ZD) the Project of Educational Departmentof Anhui Province(KJ2010B136) the Scientific Research Fund for Fostering Distinguished Young Scholars of Anhui University(KJJQ1001) the Project for Academic Innovation Team of Anhui University(KJTD001B)
关键词 Bethe树 LAPLACE矩阵 邻接矩阵 代数连通度 PERRON向量 Bethe tree Laplacian matrix adjacency matrix algebraic connectivity Perron vector
  • 相关文献

参考文献8

  • 1Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98): 2984305.
  • 2Heilmann O J, Lieb E H. Theory of monomer-dimer systems[J]. Communications in Mathematical Physics, 1972, 25(3): 190-232.
  • 3Rojo O, Soto R. The spectra of the adjacency matrix and Laplacian matrix for some balanced trees[J]. Linear Algebra and its Applications, 2005, 403(1): 97-117.
  • 4Rojo O. The spectra of some trees and bounds for the largest eigenvalue of any tree[J]. Linear Algebra and its Applications, 2006, 414(1): 199-217.
  • 5Rojo O. The spectra of a graph obtained from copies of a generalized Bethe tree[J], Linear Algebra and its Applications, 2007, 420(2-3): 490-507.
  • 6Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1991.
  • 7I Golub G H, Van Loan C F. Matrix Computations[M]. Baltimore: Johns Hopkins University Press, 1989.
  • 8Varga R S. Matrix Iterative Analysis[M]. New Jersey: Prentice-Hall Inc, 1962.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部