期刊文献+

免疫粒子群算法下向量机参数选择及金融应用

Parameter Selection of Support Vector Machines Based On Immune Particle Swarm Optimization Algorithm and Its Application in Finance
下载PDF
导出
摘要 针对粒子群算法易陷入局部最优值的缺点,将免疫原理引入粒子群算法中,利用免疫记忆与自我调节机制促使各适应度层次的粒子维持一定浓度,保证群体的多样性,从而避免算法陷入局部最优。随后将这种改进的算法应用于支持向量机参数的选择,并在Breast Cancer等数据集上进行了实验,实验结果表明利用免疫粒子群算法选取支持向量机最优参数,能够提高支持向量机的分类正确率,具有一定的实用性,特别在经济金融应用上前景可观。 To avoid trapping into local optimization of Particle Swarm Optimization (PSO) algorithm, the principle of immune was introduced to improve the PSO algorithm for searching the optimal parameters of support vector machines (SVM).The improved method utilized the function of immune memory and the self adjustment mechanism to maintain the concentration of particles at a certain level in every layer to guarantee the diversity of population. So it avoided the problem of local optimization. The improved algorithm was verified with the Breast Cancer, Ionosphere and German datasets. The results demonstrate that the algorithm can improve the overall performance of SVM classifier and its application in the field of finance will lead to prosperous future.
作者 林菁 江琳
出处 《福建金融管理干部学院学报》 2012年第3期60-64,共5页 Journal of Fujian Institute of Financial Administrators
关键词 支持向量机 免疫粒子群算法 参数选择 SVM parameter selection immune particle swarm algorithm.
  • 相关文献

参考文献10

二级参考文献38

  • 1邵信光,杨慧中,石晨曦.ε不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(B11):215-218. 被引量:6
  • 2齐志泉,田英杰,徐志洁.支持向量机中的核参数选择问题[J].控制工程,2005,12(4):379-381. 被引量:39
  • 3[1]Vapnik V and Lerner A. A pattem recognition using generalized portrait method [J]. Automation and Remote Control, 1963,24:.
  • 4[3]Corinna Cortes, Vladimir Vapnik. Support-Vector Networks [J]. Machine Learning, 1995,20(3) :273-297.
  • 5[4]Vapnik V. Statistical leoing theory[M]. New York:John Wiley & Sons, 1998
  • 6[5]Scholkopf B, Smola A J. Learning with kernels [M].Cambridge,MA: MIT Press, 2002.
  • 7[6]Scholkopf B, Plat J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001,13(7): 1443-1471.
  • 8[7]Joachims T. Transductive inference for text classification using support vectoor machine[A]. In prooceedings of the Sixteenih International Conference on Machine Learning [C]. Morgan Kaufmann, 1999:148-156.
  • 9[10]Yiqiang Zhan, Dinggang Shen. Design efficient support vector machine for fast classification [J]. Pattern Recognition, 2005,38:157-161.
  • 10[11]Zhang X. Using class-center vectors to build support vector machines[A]. InPrroceedingss of NNSP'99[C], 1999.

共引文献2406

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部