期刊文献+

凸优化理论在非线性滚动时域控制中的应用 被引量:1

Convex Optimization Theory Applied to Nonlinear Receding Horizon Control
下载PDF
导出
摘要 滚动时域控制是一种考虑整个固定时域范围的控制方法,对于每次由优化算法得到的最优控制序列,仅取序列中的第一个元素作为当前此时刻的控制率。滚动时域控制是一种基于模型、滚动优化并结合反馈校正的优化控制算法。在由控制自由变量的非线性函数组成的非线性优化问题中,该控制自由变量的求取可采用凸优化理论中的相关算法来获取,进而采用滚动时域的思想来重新组合控制变量,以得到最优的控制变量。对于非线性系统中滚动时域控制所得到的最优化问题,分析非线性系统的滚动时域控制是否存在最优解,利用凸优化理论中的基本知识分别推导出此最优化问题在无和有集合约束条件下存在最优解的充要条件,并将此充要条件与经典优化理论中现有的最优条件进行对比,得出该充要条件的优势,最后将凸优化理论在无人机航迹规划算例中进行仿真验证。 Receding Horizon Control (RHC) is a control method which is applied in a whole fixed horizon range. The RHC chooses the first element as the current control law among the optimum control sequences obtained by any optimization algorithms. The RHC is an optimization control algorithm based on the model, receding optimization and feedback tuning. For a nonlinear optimization problem composed of a nonlinear function coming from some control free variables, the free variables can be derived by many correspond algorithms in convex optimization theory. After we used the ideas of the receding horizon to reassemble the obtained control variables, the optimum control variable sequence was gained. To the nonlinear optimum problem in receding horizon control design, we analyzed whether there was an optimum solution in nonlinear system's receding horizon control. Based on the principle theory in convex optimization, we derived two necessary and sufficient conditions of the optimum solution between set constrains and no set constrains. Then we compared these two necessary and sufficient conditions with classical FJ condition so as to advantage efficiency of this condition. Finally we applied the theoretical results in path planning of UAV of the analysis was verified. get the and the
出处 《电光与控制》 北大核心 2012年第10期62-69,共8页 Electronics Optics & Control
基金 国家自然科学基金(60961003)
关键词 滚动时域控制 凸优化 非线性优化 无人机 航迹规划 receding horizon control convex optimization nonlinear optimization UAV path planning
  • 相关文献

参考文献10

  • 1GUARDABASSI G. Virtual reference direct method:An off-line approach to data-based control system design [ J ]. IEEE Transactions of Automatic Control, 2000, 45 (5) :954-959.
  • 2LENNART L. System identification:Theory for the user [ M]. Prentice Hall, 1999.
  • 3BAZANELLA A S. Iterative minimization of H2 control performance criteria [ J ]. Automatica, 2008, 44 ( 10 ) : 2549-2559.
  • 4CAMPI M C. Direct nonlinear control design :The virtual ref- erence feedback tuning approach [ J ]. IEEE Transactions of Automatic Control, 2006, 51( 1 ) : 14-27.
  • 5LECHINI A, CAMPI M C. Virtual reference feedback tu- ning for two degrees of freedom controllers [ J ]. Intemation Journal of Adaptive Control and Signal Processing, 2002, 16(10) :355-371.
  • 6PINTELON R, SCHOUKENS J. System identification: A frequency domain approach [ M ]. New York: IEEE Press, 2001.
  • 7BOYD S, VANDENBERGHE L. Convex optimization [ M ]. UK : Cambridge University Pre~, 3, 2008.
  • 8NOCEDAL J, WRIGHT S J. Numerical optimization [ M ]. Berlin: Springer- Verlag, 2002.
  • 9李向旭,张曾科,姜敏.两轴稳定平台的模糊-PID复合控制器设计与仿真[J].电光与控制,2010,17(1):69-72. 被引量:13
  • 10王建宏,王道波.机载稳定跟踪平台速率回路的内模H_∞控制[J].电光与控制,2011,18(1):20-23. 被引量:4

二级参考文献17

共引文献14

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部