期刊文献+

有向相似性对协同过滤推荐系统的影响研究 被引量:2

Effect of Direct Similarity on Collaborative Filtering Recommender Systems
下载PDF
导出
摘要 为研究用户的相似性对协同过滤个性化推荐算法的影响,认为用户的有向相似性应该由邻居用户指向目标用户,而非由目标用户指向邻居用户。基于该思想,提出了一类改进的协同过滤算法。通过对Movielens数据集的实验分析,结果发现改变用户相似性的方向可大幅提高推荐结果的准确度和推荐列表的多样性。进一步,强化相似度高的用户的推荐强度可大幅提高推荐效果,算法的准确性可提高17.94%,达到0.086 4,当推荐列表的长度为10时,推荐列表的多样性可达到0.892 9,提高20.9%。该工作表明用户相似性的方向是否合理对推荐算法具有非常大的影响。 In this paper, to study the effect of user similarities to CF recommendation algorithms, we argue that the similarities which should be taken into account are those come from the neigh- bor users to the target user. Based on the above idea, we present a modified CF algorithm. The numerical results on a benchmark dataset, MovieLens, show that by using the direction from neighbor users to the target user, the performance of this algorithm, including accuracy and di- versity, can be improved greatly. More importantly, we find that when enhancing the higher sim- ilarity users' recommendation power, the accuracy can reach 0. 086 4, which is further improved by 17.94%. When the recommendation length equals to 10, the diversity reaches 0. 892 9 and be further improved by 20.9 %. Our work indicates that the direction of user similarity is an impor tant factor of the CF algorithm.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2012年第3期46-49,75,共5页 Complex Systems and Complexity Science
基金 国家自然科学基金(10905052 70901010 71071098 71171136) 上海市科研创新基金(11ZZ135 11YZ110) 教育部科学技术研究重点项目(211057) 上海市系统分析与集成重点学科(S30501) 上海市青年科技启明星计划(A类)(11QA1404500)
关键词 管理科学与工程 个性化推荐 用户有向相似性 Key words: management science and engineering personalized recommendation direct user simi- larity
  • 相关文献

参考文献12

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art andpossible extensions [J]. IEEE Trans Know Data Eng, 2005,17(6) : 734 - 749.
  • 2Liu J G,Chen M Z Q? Chen J, et al. Recent advances in personal recommendation systems [J]. Int J Info & Sys Sci,2009,5(2): 230 - 247.
  • 3刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:434
  • 4Herlocker J L, Konstan J A,Terveen K,et al. Evaluating collaborative filtering recommender systems [J]. ACM TransInform Syst,2004, 22(1) : 5-53.
  • 5Konstan J A,Miller B N, Maltz D,et al. GroupLens: applying collaborative filtering to usenet news [J]. CommunACM, 1997, 40(3): 77 - 87.
  • 6Liu J G, Wang B H,Guo Q. Improved collaborative filtering algorithm via information transformation [J]. Int J ModPhys C, 2009, 20(2): 285 -293.
  • 7宣照国,苗静,党延忠.基于扩展邻居的协同过滤算法[J].情报学报,2010,29(3):443-448. 被引量:6
  • 8潘红艳,林鸿飞,赵晶.基于矩阵划分和兴趣方差的协同过滤算法[J].情报学报,2006,25(1):49-54. 被引量:16
  • 9Balabanovic M, Shoham Y. Fab: content-based, collaborative recommendation [J]. Comm ACM, 1997,40(3) :66 - 72.
  • 10Pazzani M J. A framework for collaborative, content-based, and demographic filtering [Jj. Artif Intell Rev, 1999, 13(5/6): 393 -408.

二级参考文献125

  • 1龚松杰.个性化推荐中一种新的相似性计算方法[J].计算机系统应用,2008,17(7):87-89. 被引量:1
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 4Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 5梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 6Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 8Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 9Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 10Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87

共引文献450

同被引文献19

  • 1张丙奇.基于领域知识的个性化推荐算法研究[J].计算机工程,2005,31(21):7-9. 被引量:34
  • 2孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 3GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative fil-tering to weave an information tapestry[J].Communications of theACM,1992,35(12):61-70.
  • 4ADOMAVICIUS G,TUZHILIN A.Toward the next generation ofrecommender systems:a survey of the state-of-the-art and possible ex-tensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749.
  • 5BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of pre-dictive algorithms for collaborative filtering[C]//Proc of the 14thConference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers Inc,1998:43-52.
  • 6WANG Jing,YIN Jian.Enhancing accuracy of user-based collaborativefiltering recommendation algorithm in social network[C]//Proc of the3rd International Conference on System Science,Engineering Designand Manufacturing Informatization.2012:142-145.
  • 7ZENG Wei,SHANG Ming-sheng,ZHANG Qian-ming,et al.Can dis-similar users contribute to accuracy and diversity of personalized rec-ommendation[J].International Journal of Modern Physics C,2010,21 (10):1217-1227.
  • 8李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538. 被引量:93
  • 9刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:434
  • 10刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10. 被引量:131

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部