期刊文献+

面向多目标搜索的群机器人任务分配研究 被引量:2

Research on Task Allocation in Multi-Target Localization in Swarm Robotics Based on Response Threshold Model
下载PDF
导出
摘要 针对群机器人在多目标搜索过程中的协作分工问题,受黄蜂群劳动分工的启发,在黄蜂群的响应阈值模型中引入距离变量来解决群机器人多目标搜索中的任务分配问题。当机器人感知到目标信号时,机器人根据当前搜索该目标的机器人数量以及自身距群体最优位置之间的距离决定是否参与搜索该目标信号,从而实现了机器人之间针对搜索不同目标的任务分配。仿真结果表明,该方法有效可行。 Aiming at collaboration and task allocation of swarm robots in multi-target localization, inspired by divi- sion of labor in social wasp, the distance variable is applied to response threshold model to solve task allocation in swarm robotics. Robots will decide whether to search the target depending on the number of robots searching for the target and the distance between them and the global best while detecting the signals emitted from targets, and the robots can effectively allocate the task based on different signals. Simulation results have shown that this method is feasible and effective.
出处 《太原科技大学学报》 2012年第4期262-268,共7页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(60975074) 山西省自然科学基金(2009011017-1)
关键词 群机器人 多目标搜索 黄蜂群算法 任务分配 swarm robotics, multi-target localization, wasp swarm algorithm, task allocation
  • 相关文献

参考文献14

  • 1XUE S, ZENG J. Sense Limitedly, Interact Locally:the Control Strategy for Swarm Robots Search [ C ]//Proc of 2008 IEEE Intl Conf on Networking, Sensing and Control, China : Sanya, Hainan ,2008,402-407.
  • 2KANTOR G, SINGH S, PETERSON R, et al. Distributed Search and Rescue with Robot and Sensor Teams [ J ]. Springer Tracts in Advanced Robotics ,2006,24 (2) :529-538.
  • 3HAYES A T. Self-Organized Robotic System Design and Autonomous Odor Localization[ D ]. USA, California:California Institute of Technology, 2002.
  • 4CUI X, HARDIN T, RAGADE R K, et al. A Swarm Approach for Emission Sources Localization[ C ] //The 16th IEEE International Conference on Tools with Artificial Intelligence, USA Boca Raton Florida,2004.
  • 5ZHANG D, XIE G, YU J, et al. Adaptive task assignment for muhiple mobile robots via swarm intelligence approach [ J ]. Robotics and Automomous Systems, 2007,55 (7) : 572-588.
  • 6KRIEGER M, BILLETER J B, KELLER L. Ant-like Task Allocation and Recruitment in Cooperative Robots[ J ]. Nature,2000, 406 (6799) : 992-995.
  • 7LABELLA T H, DORIGO M, DENEUBOURG J L. Self-organized task allocation in a group of robots [ C ]//Proc of the 7th lnt Symp on Distributed Autonomous Robotic Systems(DARS) ,2004.
  • 8GERKEY B P, MATARIC M J. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems [ J ]. The International Journal of Robotics Research,2004,23 (9) :939-954.
  • 9BONABEAU E,SOBKOWSKI A,THERAULAZ G, et al. Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects [ C ]//Proceeding of BCEC97. Skovde, Sweden, 1997 : 36-45.
  • 10BONABEAU E, THERAULAZ G, Deneubourg J L. Fixed Response Thresholds and the Regulation of Division of Labor in Insect Societies [ J ]. Bulletin of Mathematical Biology, 1998,60 (4) : 753-807.

二级参考文献10

  • 1YAMAUCHI B. Decentralized coordination for multi-robot exploration [ J ]. Robotics and Autonomous Systems, 1999,29 (2) : 111 -118.
  • 2CHOSET H. Coverage of Known Spaces: The Boustrophedon Cellular Decomposition[ J ]. Autonomous Robots ,2000,9 (3) :247- 253.
  • 3SYLVIA C WONG,BRUCE A MACDONALD. A topological coverage algorithm for mobile robots [ C ]//Proceedings of the 2003 IEEE/RSJ Intl Conference on Intelligent Robots and Systems, Las Vegas ,Nevada. 2003:1685-1690.
  • 4CHOSET H, BURDICK J. Sensor based planning I, The generalized Voronoi graph [ C ]//IEEE International Conference on Robotics and Automation, 1995 : 1649-1655.
  • 5SPEARS D F, KERR W, SPEARS W F. Physics-Based Robots Swarms For Coverage Problems [ J ]. Int J on Intelligent Control and Systems ,2006,11 (3) : 11-23.
  • 6WAGNER I A,LINDENBAUM M. MAC vs PC: Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains [ J ]. Int J of Robotics Research ,2000,19 (1) :12-31.
  • 7KOENING S, SZYMANKI B. Efficient and inefficient ant coverage methods [ J]. Annals of Mathematics and Artificial Intelligence, 2001,31:41-76.
  • 8THRUN S. Efficient exploration in reinforcement learning[ R]. Pittsburgh:Carnegie Mellon University, 1992.
  • 9BALCH T, ARKIN R. Avoiding the past: A simple, but effective strategy for reactive navigation [ C ]//International Conference on Robotics and Automation, 1993:678-685.
  • 10薛颂东,曾建潮.群机器人研究综述[J].模式识别与人工智能,2008,21(2):177-185. 被引量:26

同被引文献25

  • 1王俭,肖金球,赵鹤鸣.目标信号导航的机器人路径二次优化[J].电子测量与仪器学报,2007,21(5):73-76. 被引量:2
  • 2YANG S, MENG M. An efficient neural network ap- proach to dynamic robot motion planning [ J ]. Neural Networks, 2000 13 (2) : 143-148.
  • 3SUGIHARA K, SMITH J. Genetic algorithms for adap- tive motion planning of an autonomous mobile robot [ C ]. IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997,138-143.
  • 4YONG T, QING L, LI J W. An improved PSO for path planning of mobile robots and its parameters discussion [ C ]. International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 34-38.
  • 5AGILI S, BJORNBERG D B, MORALES A. Optimized search over the Gabor dictionary for note decomposition and recognition [ J ]. Journal of the Franklin Institute, 2007, 344 (7) : 969-990.
  • 6YU W, PENG J, ZHANG X, et al. An adaptive unscent- ed particle filter algorithm through relative entropy for mobile robot self-localization [ J ]. Mathematical Prob- lems in Engineering, 2013, 23(7) :1256-1271.
  • 7CHAKRABORTY J, KONAR A, UDAY K. Chakraborty distributed cooperative multi-robot path planning using differential evolution[ J]. IEEE Congress on Evolutionary Computation, 2008 : 718-725.
  • 8MARQUES L, NUNES U, DEALMEIDA A T. Particle swarm-based olfactory guided search [ J ]. Autonomous Robotics, 2006 (20) :277-287.
  • 9ZHUANG Q, xu s, cuI z. Design to experimental platform for swarm robotic search [ J]. Journal of Bioin- formatics and Intelligent Control,2013,2( 1 ):65-72.
  • 10郭晋炜,曾建潮.基于目标搜索任务的群机器人路径规划[J].系统仿真学报,2010,22(12):2842-2846. 被引量:7

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部