期刊文献+

光学薄膜鲁棒设计中膜系误差灵敏度控制 被引量:5

Application of thin film errors sensitivity control concept to robust design of multilayer optical coatings
下载PDF
导出
摘要 提出了一种基于膜系误差灵敏度控制的鲁棒膜系设计方法,建立了鲁棒膜系设计评价函数在膜层参数误差统计分布下的解析表达式,避免统计样本数目有限性造成的样本均值与总体期望的误差,以及过大数目样本造成的长的计算时间消耗,并通过宽带增透膜、中性分光膜和线性透射率滤光片等多种薄膜的鲁棒设计实验证实了其在膜层参数误差控制上的效果。结果表明:该新型鲁棒膜系设计方法具有内在的快速算法特性,其设计膜系对镀膜中的膜厚监控误差不敏感,对于高质量薄膜的重复制备和批量成品率的提高具有实用价值。 A robust design method of multilayer optical coatings based on optimal control of thin-film errors sensitivity is presented in this paper. An analytical calculation model of robust design merit function under statistic layer parameters' errors is established. It can avoid the computation errors of robust design merit function caused by limited number of layer parameters' er- rors simulation sample, and can avoid the long time consumption when large number of layer parameters' errors simulation sam- ples is used. The effectiveness of the robust design method in thin film errors tolerance control is demonstrated by application to a variety of optical coatings, such as the broadband antireflection coating, neutral beam splitter and linear ramp transmittance fil- ter. Results show that the robust design method owns an inherent fast computation characteristic and the designed film is insensi- tive to the monitoring thickness errors in deposition process. This method is of practical significance to improving the mass pro- duction yields and repetitive production of high quality optical coatings.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第10期2391-2399,共9页 High Power Laser and Particle Beams
关键词 薄膜 鲁棒设计 膜系误差灵敏度 解析模型 thin film robust design thin-film errors sensitivity analytic model
  • 相关文献

参考文献6

二级参考文献74

  • 1顾培夫,陈海星,艾曼灵,章岳光,刘旭.TiO_2膜消光系数的确定及制备参量的影响[J].光学学报,2005,25(7):1005-1008. 被引量:8
  • 2Yanfei Zheng, Kazuo Kikuchi. Analytical method of determination optical constants of a weekly absorbing thin film [J]. Appl. Opt., 1997, 36(25): 6325-6328.
  • 3R. Swanepoel. Determination of the thickness and optical constants of amorphous silicon[J]. J. Phys. E, 1983, 16: 1214 -1222.
  • 4J. A. Dobrowoski, F. C. Ho, A. Waldorf. Determination of optical constants of thin film coating materials based on inverse synthesis[J]. Appl. Opt. , 1983, 22:3191-3200.
  • 5D. P. Arndt, R. M. A. Azzam, J. M. Bennett et al.. Multiple determination of the optical constants of thin-film coating materials[J]. Appl. Opt., 1984, 23:3571-3596.
  • 6A. B. Djurisic, J. M. Elazar, A. D. Ratic. Simulatedannealing-based genetic algorithm for modeling the optical constants of solids[J]. Appl. Opt., 1997, 36(28): 7097-7103.
  • 7J. S. Parramon, J. F. Borrull, Salvador Bosch et al.. Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization[J]. Appl. Opt., 2003, 42(7): 1325-1328.
  • 8W. P. Chen, J. M. Chen. Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films[J].J. Opt. Soc. Am. , 1981, 71:189-191.
  • 9F. Abeles. Methods for determining optical parameters of thin films[C] . Progress in Optics ed by E. Wolf, 1963. 251-288.
  • 10R. Ulrich, K. Torge. Measurements of thin film parameter with a prism coupler[J]. Appl. Opt, , 1973, 12,, 2901-2908.

共引文献19

同被引文献37

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部