摘要
改进了仪洪勋、林伟川等人关于整函数唯一性的定理,得到了关于具有Borel例外值并且级为有穷非整数的非常数亚纯函数的唯一性的结论.设f(z)、g(z)为非常数亚纯函数,g(z)的级λ(g)为有穷非整数,0和∞是f(z)与g(z)的CM分担值,f(z)为正规增长函数,且∞为f(z)的Borel例外值,若存在两个非零有穷判别的复数a1、a2,满足1)(aj,f)■1)(aj,g)(j=1,2)且max{Θ(0,f),δ(a1,f),δ(a2,f)}>0,或者满足kj)(aj,f)■kj)(aj,g)(j=1,2),其中k1≥1,k2≥2,则f(z)≡g(z).
In this paper, we improved some results of H. X. Yi and W. C. Lin etc, and got some the- orems on the uniqueness of inconstant meromorphic functions that is a limited non integer and func- tions with Borel exceptional value. Let f(z) and g(z) be two non-constant meromorphic functions. If f and g share 0 and ∞ CM, ∞ be Borel exceptional value of f, a2 and a2 be nonzero finite complex number. Suppose that a1 and a2 such that E1) (aj ,f) E1) (aj ,g) (j = 1,2), max{Θ(0,f),δ(a1 ,f),δ(a2, f) } 〉 0 or Ekj) (aj, f)Ekj) (a1,g) ( j = 1,2), then f (z)≡ g(z).
出处
《辽宁师范大学学报(自然科学版)》
CAS
2012年第3期305-309,共5页
Journal of Liaoning Normal University:Natural Science Edition
关键词
亚纯函数
唯一性
BOREL例外值
亏值
meromorphic functions
uniqueness
Borel exceptional value
deficient value