期刊文献+

PCCSAP-3D程序压力场算法改进 被引量:3

Improvement on Algorithm for Pressure Equation in PCCSAP-3D
下载PDF
导出
摘要 介绍大型先进压水堆安全壳专用分析程序PCCSAP-3D计算采用的方法,引入GMRES(Generalized MinimalRESidual)方法改进该程序的压力场算法.使用GMRES算法的实用变形,并采用合适的预处理技术,比较GMRES算法和ML-ADI算法在求解压力方程时的收敛速度.结果表明,利用压力矩阵结构化和稀疏性的特点,采用预处理GMRES算法能够更快速地求解压力方程.当压力矩阵规模变大时,GMRES算法相对于ML-ADI方法能够节省更多的时间. An algorithm for pressure equation in a computational code PCCSAP-3D, which is dedicated to analyze transient process of PCCS (Passive Containment Cooling System) , is introduced. GMRES is introduced to accelerate calculation speed. Pre-conditioning of GMRES is applied. Convergence rates of GMRES and ML-ADI are compared. It shows that pre-eonditioned GMRES can be used to solve pressure equations more efficiently. Since pressure equation coefficient matrix is structural and sparse, pre-conditioned GMRES is more efficient than ML-ADI as pressure equation coefficient matrix is larger.
出处 《计算物理》 EI CSCD 北大核心 2012年第5期700-706,共7页 Chinese Journal of Computational Physics
基金 国家重大科技专项(2008ZX06902-006)资助项目
关键词 大型先进压水堆 PCCS GMRES ML-ADI advanced nuclear power plant PCCS GMRES ML-ADI
  • 相关文献

参考文献8

  • 1Yu Jiyang,Jia Baoshan. PCCSAC : A three-dimensional code for AC600 passive containment cooling aystem analysis [ J ].Nuclear Science and Engineering, 2002 , 142(2) : 230 - 236.
  • 2Yu Jiyang. Three dimensional research of advanced pressurized water reactor passive containment cooling system[ D]. Beijing:Tsinghua University, 1998.
  • 3Peaceman D W, Rachford Jr H H. The numerical solution of parabolic and elliptic differential equations [ J ]. Journal of theSociety for Industrial and Applied Mathematics, 1955,3(1): 28 -41.
  • 4Bottoni M. A variant of the ADI method for two-phase flow calculations[ J]. Computers & Fluids, 1994,23(2) : 305 -321.
  • 5Saad Y, Schultz M. GMRES : A generalized minimal residual algorithm for solving nonsymmetric linear systems [ J ]. SIAMJournal on Scientific and Statistical Computing, 1986,7(3) : 856 - 869.
  • 6Nachtigal N M , Reichel L, TrefetKen, et al. A hybrid GMRES algorithm for nonsymmetric linear systems[ J]. SIAM J MatrixAnal A, 1992, 3: 796 -825.
  • 7Joubert W. On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems [ J ].Numerical Linear Algebra with Applications, 1994,5(1): 427 - 447.
  • 8钟宝江.一种灵活的混合GMRES算法[J].高等学校计算数学学报,2001,23(3):261-272. 被引量:17

二级参考文献2

  • 1Zhong Baojiang,Transactions NUAA,1997年,14卷,2期,146页
  • 2Jia Zhongxiao,SIAM J Matrix Anal Appl,1995年,16卷,3期,843页

共引文献16

同被引文献3

  • 1张迪,严锦泉.WGOTHIC程序分布参数法建模初探[C].第十二届全国反应堆热工流体学术会议,丽江,中国,2011:342-346.
  • 2Warsi, Z U A. Fluid Dynamics-Theoretical andComputational Approaches[M]. CRC Press, Inc, 1993.
  • 3Schlichting H. Boundary-Layer Theory[M]. Seventhedition. McGraw-Hill, 1978: 235.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部