期刊文献+

一类线性随机Volterra积分方程的数值方法

Numerical Methods for a Class of Linear Stochastic Volterra Integral Equations
下载PDF
导出
摘要 将Winner过程引入到经典的线性Volterra积分方程中,得到一类线性随机Volttera积分方程.研究这类随机积分方程解在平方可积空间中的存在性,证明了在均方意义下解的唯一性,并应用配置法构造了数值求解格式.数值实验验证了理论结果. Winner process was introduced into the classical linear Voherra integral equations so as to get a class of linear stochastic Volterra integral equations. Firstly, we researched the existence of solution for this kind of stochastic integral equations in the square integral space, and then proved the uniqueness of solution in the sense of the mean square. We constructed the numerical scheme via collocation method, and numerical experiments confirmed our theoretical results.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期854-858,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071102)
关键词 随机Volterra积分方程 压缩映射定理 配置法 stochastic Volterra integral equations contraction mapping theorem collocation method
  • 相关文献

参考文献11

  • 1Kwok Y K. Mathematical Models of Financial Derivatives [ M]. 2nd ed. New York: Springer, 2009.
  • 2Israel G. Book on Mathematical Biology [ M ]. Amsterdam: Elsevier, 2005.
  • 3Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations [ M ]. Cambridge: Cambridge University Press, 2004.
  • 4Brunner H, XIE He-hu, ZHANG Ran. Analysis of Collocation Solutions for a ClaSs of Functional Equations with Vanishing Delays [J]. IMA J Numer Anal, 2011, 31(2) : 698-718.
  • 5CHEN Yan-ping, TANG Tao. Convergence Analysis of the Jacobi Spectral-Collocation Methods for Volterra'Integral Equations with a Weakly Singular Kernel [ J]. Math Comp, 2010, 79: 147-167.
  • 6Atkinson K, Flores J. The Discrete Collocation Method for Nonlinear Integral Equations [ J ]. IMA J Numer Anal, 1993, 13(2) : 195-213.
  • 7Elnagar G N, Kazemi M. Chebyshev Spectral Solution of Nonlinear Volterra-Hammerstein Integral Equations [ J ]. J Comput Appl Math, 1996, 76(1/2) : 147-158.
  • 8ZHANG Xi-cheng. Euler Schemes and Large Deviations for Stochastic Voherra Equations with Singular Kernels [ J]. J of Differential Equation, 2008, 244(9): 2226-2250.
  • 9Berger M, Mizel V. Voherra Equations with Ito Integrals, I and II [J]. J Integral Equations, 1980, 2: 187-245; 319-337.
  • 10Lawrence C E. An Introduction to Stochastic Differential Equations [ M]. 2nd ed. UC: Berkeley, 2002.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部