期刊文献+

求解二次锥规划问题的非精确光滑算法

Inexact Smoothing Algorithm for Solving Second-Order Cone Programming Problems
下载PDF
导出
摘要 针对大规模二次锥规划问题提出一种非精确光滑算法.该算法允许搜索方向有一定的误差,在选择步长时采用非单调线性搜索策略.证明了从任意点出发能得到算法的局部二次收敛速率. A new inexact smoothing algorithm for solving large-scale second-order cone programming problems (SOCP) was proposed. This algorithm allows the search direction to have the certain error, and the non- monotone linear strategy is used to select the step length. The algorithm can get its local quadratic convergence from any point.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期881-886,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60974082) "无线传感器网络功率控制与优化研究国家重点实验室"专项科研基金(批准号:ISN02080003)
关键词 二次锥规划问题 非精确光滑算法 局部二次收敛 second-order cone programming problems inexact smoothing algorithm local quadraticconvergence
  • 相关文献

参考文献10

  • 1Alizadeh F, Goldfarb D. Second-Order Cone Programming [ J]. Mathematical Programming, 2003, 95: 3-51.
  • 2Debnath R, Muramatsu M, Takahashi H. An Effcient Support Vector Machine Learning Method with Second-Order Cone Programming for Large-Scale Problems [ J ]. Applied Intelligence, 2005, 23 ( 3 ) : 219-239.
  • 3Shivaswamy P K, Bhattacharyya C, Smola A J. Second Order Cone Programming Approaches for Handling Missing and Uncertain Data [J]. Journal of Machine Learning Research, 2006, 7: 1283-1314.
  • 4KUO Yu-ju, Mittelmann H D. Interior Point Methods for Second-Order Cone Programming and OR Applications [ J ]. Computational Optimization and Applications, 2004, 28 (3) : 255-285.
  • 5LIANG Fang, HE Guo-ping. A New Non-interior Contimuation Method for Second-Order Cone Programming [ J]. International Joint Conference on Computational Sciences and Optimization, 2009, 2: 719-722.
  • 6PAN Shao-hua, CHEN Jein-shan. A Linearly Convergent Derivative-Free Descent Method for the Second-Order Cone Complementarity Problem [ J]. Optimization, 2010, 59 (8) : 1173-1197.
  • 7Tsuchiya T. A Polynomial Primal-Dual Path-Following Algorithm for Second-Order Cone Programming [ R ]. Tokyo: The Institute of Statistical Mathematics. 1997.
  • 8Fukushima M, LUO Zhi-quan, Tseng P. Smoothing Functions for Second-Order-Cone Complimentarity Problems [ J ]. SIAM Journal on Optimization, 2002, 12(2) : 436-460.
  • 9RUI Shao-ping, XU Cheng-xian. Inexact Non-interior Continuation Method for Solving Large-Scale Monotone SDCP [ J]. Applied Mathematics and Computation, 2009, 215 (7) : 2521-2527.
  • 10SUN De-feng, SUN Jie. Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions [J]. Mathematical Programming: Ser A, 2005, 103(3) : 575-581.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部