期刊文献+

数字多波束逐点聚焦延时参数的压缩算法

The compression algorithm for focusing delay data in digital multi-beam forming
下载PDF
导出
摘要 针对数字多波束合成技术在超声成像领域应用中存在逐点聚焦延时参数的存储容量过大的问题,提出了一种四波束逐点聚焦延时参数的压缩存储与实时生成算法。首先将四波束的聚焦延时问题转换成单波束的聚焦延时问题,然后对转换后的单波束聚焦延时数据进行量化、压缩和存储。在聚焦时,将压缩存储的延时参数进行解压,实时生成四波束所需的延时参数。以8通道128阵元的平阵探头为例,对该算法进行了相关的数学推导和证明,并对其性能进行了分析讨论,验证了该算法的优越性。 Digital multi-beam forming has been widely used in ultrasound imaging system. It can effectively improve frame rate and image resolution. However, the mass of focusing delay data makes it impractical to directly implement dynamic focusing. A compression algorithm for four-beam focusing delay data is proposed to effectively reduce the storage of focusing delay data. Firstly, the calculation of four-beam focusing delay data is simplified to that of single-beam focusing delay data, which are then quantified, compressed and stored. When in dynamic receive focusing process, focusing delay data can be generated by decompressing the stored data for each channel. Take 8-channel 128-element linear array of transducers as an example, the design procedures and related mathematical derivation are described in detail and performance of the algorithm is discussed to verify the algorithm's superiority.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期99-105,共7页 Journal of Chongqing University
基金 广东省教育部产学研结合项目(2008B090500272) 第四届国家大学生创新性实验项目(101061117)
关键词 波束合成 聚焦延时参数 单波束合成 压缩存储 实时生成 beam forming focusing delay data single-beam forming compression real-time generating
  • 相关文献

参考文献14

  • 1陈民铀,王伟明.基于分段动态变迹技术的超声成像方法[J].重庆大学学报(自然科学版),2010,33(3):60-64. 被引量:6
  • 2Camacho J. Martinez O,Parrilla M, et al. A strict-time distributed architecture for digital beamforming ofultrasound signals [ J ]. IEEE Transactions onInstrumentation and Measurement, 2010,59(10) :2716-2723.
  • 3Tamano S,Kobayashi T, Sano S Z,et al. 3Dultrasound imaging system using Fresnel ring arrayhigh voltage multiplexer IC [ C] //Proceedings of the2004 IEEE Ultrasonics Symposium, August 23-27,2004, Montreal, Canada. Piscataway, N. J.,USA:IEEE Press, 2004,1 :782-785.
  • 4Wall K,Lockwood G R. A new multi-beam approachto real-time 3-D imaging[C]// Proceedings of the 2002IEEE Ultrasonics Symposium, October 8-11, Munich,Germany. Piscataway,N. J.,USA: IEEE Press,2002, 2:1803-1806.
  • 5Parrilla M, Brizuela J,Camacho J, et al. Dynamicfocusing through arbitrary geometry interfaces [C]//Proceedings of the IEEE Ulstrasonics Symposium(IUS),November 2-5,Beijing, China. Piscataway,N.J.,USA: IEEE Press, 2008 : 1195-1198.
  • 6Li P C. Efficient dynamic focus control for three-dimensional imaging using two dimensional arrays[J].IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2002,49(9) : 1191-1202.
  • 7Sohn H Y,Kang J,Cho J, et al. Time-sharing bilineardelay interpolation for ultrasound dynamic receivebeamformer[J]. Electronics Letters,2011,47(2):89-91.
  • 8沈毅,冯乃章,芦蓉.医学超声成像中数字波束形成的聚焦参数压缩方法.中国,200710072422,2007-11-28.
  • 9Aken J R V. An efficient ellipse-drawing algorithm[J].IEEE Journal of Computer Graphics and Applications,1984,4(9):24-35.
  • 10Chang J H,Song T K. A new synthetic aperturefocusing method to suppress the diffraction ofultrasound [ J ]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency, 2011, 58(2) :327-337.

二级参考文献14

  • 1冯诺.超声手册[M].南京:南京大学出版社,1999.357.
  • 2GUENTHER D A, WALKER W F. Optimal apodization design for medical ultrasound using constrained least squares Part I: Theory [J].IEEE Transactions on. , Ultrasonics. , Ferroelectrics and Frequency Control, 2007, 54 (2) : 332-342.
  • 3GUENTHER D A, WALKER W F. Optimal apodization design for medical ultrasound using constrained least squares Part II: Simulation results [J]. IEEE Transactions on. , Ultrasonics. , Ferroelectrics and Frequency Control, 2007, 54(2) : 343-358.
  • 4SYNNEVAG A, AUSTENG A, HOLM S. Adaptive beamforming applied to medical ultrasound imaging[J] IEEE Transactions on. , Ultrasonics. , Ferroelectrics and Frequency Control,2007, 54(8) :1606-1613.
  • 5MILLER S C. Method and apparatus for distributed, agile calculation of beamforming time delays and apodization values: US, 6123671[P]. 2000-09-26.
  • 6易际平.线阵B超的声场分布.生物医学工程杂志,1986,3(4):235-240.
  • 7RAUM K, OBRIEN W D Jr. Pulse-echo field distribution measurement technique for high-frequency ultrasound sources [J].IEEE Transactions on., Ultrasonics., Ferroelectrics and Frequency Control, 1997, 44(2):1747-1750.
  • 8YIATALO J T, ERMERT H. Ultrasound synthetic aperture imaging: Monostatic approach [J].IEEE Transactions on. , Ultrasonics. , Ferroeleetrics and Frequency Control , 1994, 41(3): 333-339.
  • 9SEO C, YEN J. Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation[J]. IEEE Transactions on. , Ultrasonics. , Ferroelectrics and Frequency Control, 2008, 55(10): 2198-2210.
  • 10YAYUN W, EBBINI E S. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming[J].IEEE Transactions on. , Ultrasonics. , Ferroelectrics and Frequency Control, 2008, 55(8) : 1705-1718.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部