摘要
利用双锥上的不动点定理并赋予,和g-定的增长条件,证明了二阶微分方程组多点边值问题{u^n+f(t,u,kv)=0,v^n+g(t,u,v)=0,u(0)=0,u(1)=m-2∑i=1 aiu(ξi),v(0)=o,v(1)=m-2∑i=1 biv(ηi)两组正解的存在性.其中0=ξ0<ξ1<…<ξm-1=0,0=η0<η1<…ηm-2<ηm-1=1,ai≥0,t∈(0,1),且f,g:[0,1]×R^+×R^+→R是连续的.
For a second -order and m -point boundary value problem as follows:{u^n+f(t,u,kv)=0,v^n+g(t,u,v)=0,u(0)=0,u(1)=m-2∑i=1 aiu(ξi),v(0)=o,v(1)=m-2∑i=1 biv(ηi)where 0 =ξ0〈ξ1〈…〈ξm-1=0,0=η0〈η1〈…ηm-2〈ηm-1=1,ai≥0,t∈(0,1),且f,g:[0,1]×R^+×R^+→Ris continuous. Using fixed point theorem in a double cone and endowing certain growth conditions to f and g , we prove the existence of two positive solutions for above problem.
出处
《山东师范大学学报(自然科学版)》
CAS
2012年第3期6-9,共4页
Journal of Shandong Normal University(Natural Science)
关键词
GREEN函数
多点边值问题
不动点定理
锥
正解
Green functions
m- point boundary value problem
fixed point theorem
cone
positivesolutions