期刊文献+

基于自适应高斯概率的阴影检测

SHADOW DETECTION BASED ON ADAPTIVE GAUSSIAN PROBABILITY
下载PDF
导出
摘要 提出一种基于自适应高斯概率的运动阴影检测方法.用高斯模型对阴影建模,并利用场景中的典型阴影区域初始化均值和方差.计算背景减除得到的前景点的阴影似度概率作为是否阴影的判据,被判为阴影点的像素将作为均值和方差的学习样本用来调整和更新参数以适应场景的动态变化.实验结果表明本文算法具有较高的阴影检测率和较低的误检率. A scheme to detect moving cast shadows based on adaptive Gaussian probability was proposed. Gaussian model was used to model the distribution of shadow pixels, and typical shadow segments manually segmented were used to initiate the mean and the deviation. The pixels in the foreground were classified shadow points or object points according to their corresponding Gaussian probability values. The shadow pixels were then employed to update the Gaussian model in order to adapt to the scene changes proposed algorithm gives rather high shadow pixels detection rate and low false ~ Experimental results show that the alarm rate.
作者 蒋林华
出处 《山东师范大学学报(自然科学版)》 CAS 2012年第3期26-27,32,共3页 Journal of Shandong Normal University(Natural Science)
关键词 背景减除 自适应高斯模型 阴影检测 background subtraction adaptive Gaussian model shadow detection
  • 相关文献

参考文献5

二级参考文献29

  • 1殷德奎,俞卞章,佟明安.基于多维直方图的灰度图像质量评价[J].模式识别与人工智能,1996,9(3):265-270. 被引量:11
  • 2Prati A, Mikic I, Trivedi M M, et al. Detecting moving shadows: algorithms and evaluation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2003, 25(7) :918-923.
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pat- tern Analysis & Machine Intelligence,2000,22 ( 8 ) :747- 757.
  • 4Martel-Brisson N, Zaccarin A. Moving cast shadow detec- tion from a Gaussian mixture shadow model [ C ] // Pro- ceedings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. San Diego: IEEE, 2005:643-648.
  • 5Liu Hui,Yang Chenhui, Shu Xiao, et al. A new method of shadow detection based on edge information and HSV color information [ C ] //Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transpor- tation System. Xiamen : IEEE,2009 : 286- 289.
  • 6Kato Jien, Watanabe T, Joga S, et al. An HMM/MRF based stochastic framework for robust vehicle tracking [ J ]. IEEE Transactions on Intelligent Transportation Sys- tems ,2004,5 ( 3 ) : 142-154.
  • 7Few J, Djuric P. Unsupervised vector image segmentation by a tree structure-ICM algorithm [ J]. IEEE Transactions on Medical Imaging,1996,15(6) :871-881.
  • 8KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection [ C] //Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Sys- tems:Computer Vision and Distributed Processing. Kings- ton: Kluwer Academic Publishers, 2001 : 1-5.
  • 9Li S Z. Markov random field models in computer vision [ C ]//Proceedings of the Third European Conference on Computer Vision Stockholm. Berlin/Heidelberg: Spinger- Verlag, 1994:361-370.
  • 10Besag J. Spatial interaction and the statistical analysis of lattice systems [J]. Journal of the Royal Statistical Society Series B : Mechodological, 1974,36 (2) : 192-236.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部