期刊文献+

广义条件对称和变系数非线性扩散方程的解 被引量:2

Generalized conditional symmetry and solutions to nonlinear diffusion equations with variable coefficients
下载PDF
导出
摘要 利用广义条件对称方法研究了一类变系数非线性扩散方程.当扩散项取D(u)=um(m≠-1,0,1)时,对该方程进行分类讨论,得到了该方程的一些精确解,这些精确解是泛函分离变量形式的解,它们可看作是广义泛函分离变量解的特殊形式.这些精确解有丰富的理论及实践意义,且深化和发展了此类方程的解的范畴. Using generalized conditional symmetry method to research a kind of nonlinear diffusion equations with variable coefficients.When the diffusion term is taken in the form D(u)=um(m≠-1,0,1),this equation is discussed,some exact solutions to the equation are obtained.The exact solutions are the solutions of the functional separation of variables in the form,they can be seen as a special form of generalized functional separation of variables solutions.These exact solutions have a rich theoretical and practical significance,and deepen and develop the scope of solutions of such equation.
作者 万晖
机构地区 西北大学数学系
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期14-17,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11001220) 陕西省教育厅科学研究计划项目(2010JK866)
关键词 广义条件对称 精确解 变系数非线性扩散方程 generalized conditional symmetry exact solution nonlinear diffusion equation with variable coefficients
  • 相关文献

参考文献1

二级参考文献15

  • 1[1]M.L. Gandarias, J. Phys. A: Math. Gen. 29 (1996) 607.
  • 2[2]M.L. Gandarias, J. Phys. A: Math. Gen. 29 (1996) 5919.
  • 3[3]A.S. Fokas and Q.M. Liu, Phys. Rev. Lett. 72 (1994)3293.
  • 4[4]R.Z. Zhdanov, J. Phys. A: Math. Gen. 28 (1995) 3841.
  • 5[5]C.Z. Qu, Stud. Appl. Math. 99 (1997) 107.
  • 6[6]C.Z. Qu, IMA J. Appl. Math. 62 (1999) 283.
  • 7[7]C.Z. Qu, J. Aust. Math. Soc. B41 (1999) 1.
  • 8[8]C.Z. Qu, Commun. Theor. Phys. (Beijing, China) 31(1999) 581.
  • 9[9]C.Z. Qu, S.L. Zhang, and R.C. Liu, Physica D144 (2000)97.
  • 10[10]P.G. Estevez and C.Z. Qu, J. Math. Anal. Appl. 275(2002) 44.

共引文献12

同被引文献17

  • 1王丽真,勾明,黄晴.一维等熵Navier-Stokes方程的泛函分离变量解[J].陕西师范大学学报(自然科学版),2009,37(1):11-15. 被引量:1
  • 2勾明,王丽真.非线性反应-扩散方程的分离变量解[J].西北大学学报(自然科学版),2007,37(6):963-965. 被引量:4
  • 3Zhdanov R Z.Conditional Lie-Bcklund conditional symmetry and reductions of evolution equations[J].Journal of Physics A:Mathematical and Theoretical,1995,28(13):3841-3850.
  • 4Fokas A S,Liu Q M.Nonlinear interaction of traveling waves of nonintegrable equations[J].Physical Review Letters,1994,72(21):3293-3296.
  • 5Qu C Z.Group classification and generalized conditional symmetry reduction of thenonlinear diffusion-convection equation with a nonlinear source[J].Studies in Applied Mathematics,1997,99(2):107-136.
  • 6Ji L N.Lie-Bcklund conditional symmetries and functionally generalized separable solutions to the generalized porous medium equationswith source[J].Journal of Mathematical Analysis and Applications,2012,389(2):979-988.
  • 7Qu C Z,Zhang S L,Liu R C.Separation of variables and exact solutions to quasilinear diffusionequations with nonlinear source[J].Physica D:Nonlinear Phenomena,2000,144(1/2):97-123.
  • 8Ji L N,Qu C Z.Conditional Lie-Bcklund conditional symmetries and invariant subspace tononlinear diffusion equation[J].IMA Journal of Applied Mathematics,2011,76(4):610-632.
  • 9Galaktionov V A.Geometric sturmian theory of nonlinear parabolic equations and applications[M].Boca Raton:Chapman Hall/CRC,2004.
  • 10Galaktionov V A,Va'zquez J L.Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations[J].Journal of Differential Equations,1996,127(1):1-40.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部